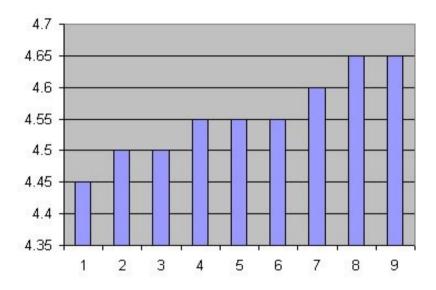
THE BASICS OF ERROR ESTIMATION

What is the plan?

- I. Statistical estimations from the observational data
- II. Poisson and normal distributions
- III. Filtration of the data

1) **Mean** or "average":
$$\langle x \rangle = \frac{1}{N} \sum_{i} x_{i}$$



Imagine we have collection of nine data points:

4.45, 4.50, 4.50, 4.55, 4.55, 4.55, 4.60, 4.65, 4.65.

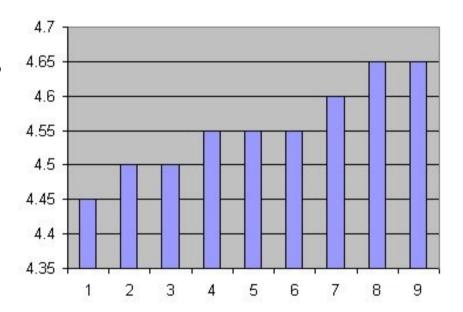
Mean:
$$(4.45 + 4.50 + 4.50 + 4.55 + 4.55 + 4.55 + 4.60 + 4.65 + 4.65)/9 = 4.56$$

2) **Median:**

The individual value from the collection such that

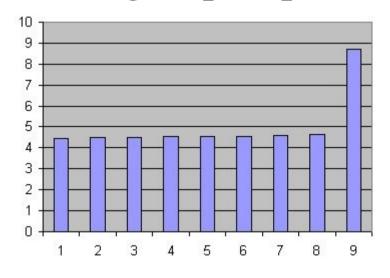
1/2 the observation are less

and $\frac{1}{2}$ are greater.



For our data set **median** is **4.55**

! Median is unaffected by a single point that is the way out of the main group of points

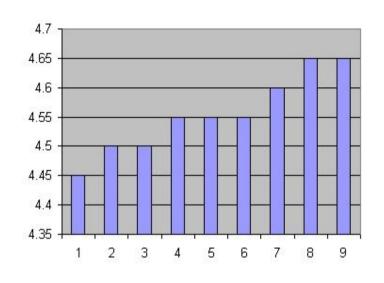


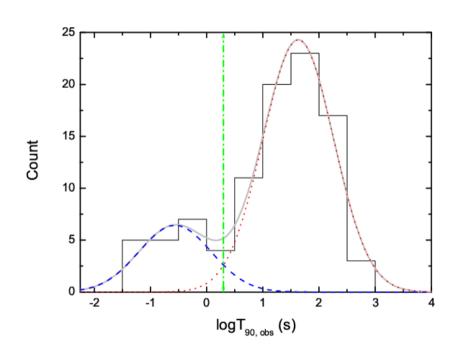
For example we consider a different data set:

4.45, 4.50, 4.50, 4.55, 4.55, 4.55, 4.60, 4.65, **8.7**

Mean: 5.01 **Median:** 4.55

3) Mode: The most frequently occurring value





Mean: 4.56 **Median:** 4.55

Mode: 4.55

Sometimes the distribution could be

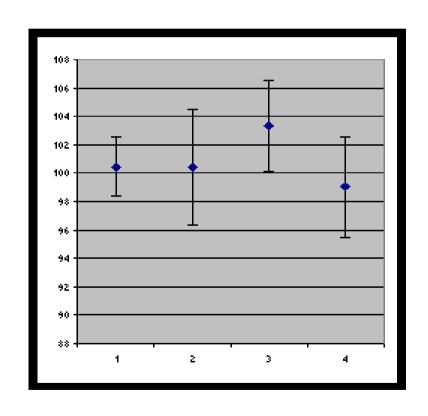
a multimodal

4) The weighted mean:

$$\langle x \rangle = \sum_{i} w_i x_i$$

If we have a deviation for each experimental value we should use the weight:

$$w_i = \frac{1/\sigma_i^2}{\sum_i 1/\sigma_i^2}$$



- 1) **Simple** deviation: $\Delta_i = x_i \langle x \rangle$
- 2) **Mean** deviation: $\langle \Delta \rangle = \frac{1}{N-1} \sum_{i} |x_i \langle x \rangle|$
- 3) **Standard** deviation ("**root mean square** deviation" or **rms** or **sigma**):

$$\sigma_x = \sqrt{\frac{1}{N-1} \sum_{i} (x_i - \langle x \rangle)^2}$$

rms is the better estimator than mean deviation

$$\sigma_x = \sqrt{\frac{1}{N-1} \sum_i \left(x_i - \langle x \rangle \right)^2}$$

In case of normally distributed data we would expect that

68% of the points will lie within $\pm 1\sigma$

95% of the points will lie within $\pm 2\sigma$

99.7% of the points will lie within $\pm 3\sigma$

Usually we accept a variation as statistically significant only if it is more than 3σ from the mean

4) If we want to answer the question how reliable is our estimate of the mean we should use

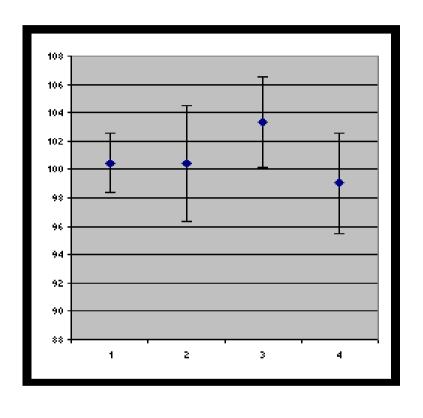
"Standard deviation in the mean":

$$\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{N}} = \sqrt{\frac{\sum_i (x_i - \langle x \rangle)^2}{N(N-1)}}$$

This is an estimator of quality of the mean and it reflects the improvement gained by averaging several data points.

for example

1	2	3	4
102.7051	96.99768	106.1652	106.7639
93.74577	87.22317	84.87374	92.7521
92.91529	102.4426	107.6497	98.48607
102.2656	112.7647	108.2898	93.23228
110.5028	111.9835	111.2649	110.5721
92.93493	117.3313	117.9858	100.0187
104.8264	78.16412	88.74805	121.3331
102.9943	97.65819	102.8124	96.12005
93.52754	110.9502	107.0592	86.2086
108.0685	89.13299	98.85192	84.94068



$$\langle x \rangle = \frac{1}{N} \sum_i x_i$$
 100.4486 100.4649 103.3701

$$\sigma_x = \sqrt{\frac{1}{N-1} \sum_i \left(x_i - \langle x \rangle\right)^2}$$
 6.660202 12.92402 10.09143 11.23548 $\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{N}}$ 2.106141 4.086935 3.191189 3.552972

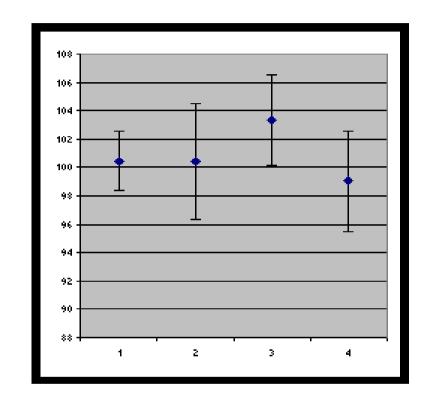
And finally we'll calculate the weighted

Mean

$$\langle x \rangle = \frac{1}{\sum_{i} 1/\sigma_i^2} \sum_{i} \frac{x_i}{\sigma_i^2}$$

And it's variance

$$\sigma_{\langle x \rangle}^2 = \frac{1}{\sum_i 1/\sigma_i^2}$$



$$x_i$$
 100.4486 100.4649 103.3701 99.04276

$$\sigma_i$$
 2.106141 4.086935 3.191189 3.552972

$$\langle x \rangle$$
 100.7280 $\sigma_{\langle x \rangle}$ 1.47

Let consider the quantities $x_1, x_2, ..., x_n$ with given uncorrelated errors $\sigma_1, \sigma_2, ..., \sigma_n$

Now we want to calculate the error for quantity q which is depend on $x_1, x_2, ..., x_n$:

$$q = f(x_1, x_2, ..., x_n)$$

We can estimate the error of q via

$$\sigma_q^2 = \sum_i \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_i^2$$

Examples. 1D case:

$$\sigma_q = \left| \frac{dq}{dx} \right| \sigma_x$$

We know the frequency ν of the photon with error σ . Now we want to calculate the energy and wavelength of the photon and their errors.

$$E = h\nu$$

$$\sigma_E = \left| \frac{dE}{d\nu} \right| \sigma_\nu = h\sigma_\nu$$

$$\lambda = \frac{c}{\nu}$$

$$\sigma_{\lambda} = \left| \frac{d\lambda}{d\nu} \right| \sigma_{\nu} = \frac{c}{\nu^2} \sigma_{\nu}$$

Examples. 2D case:

$$\sigma_q^2 = \left(\frac{\partial q}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial q}{\partial y}\right)^2 \sigma_y^2$$

We know the fluxes in two X-ray lines and their errors. How to calculate the error of ratio of the fluxes?

$$R = \frac{F_1}{F_2}$$
 $\sigma_R^2 = \left(\frac{\sigma_{F_1}}{F_2}\right)^2 + \left(\frac{\sigma_{F_2}}{F_2^2}\right)^2 F_1^2$

$$\left(\frac{\sigma_R}{R}\right)^2 = \left(\frac{\sigma_{F_1}}{F_1}\right)^2 + \left(\frac{\sigma_{F_2}}{F_2}\right)^2 \Rightarrow \sigma_R = R\sqrt{\left(\frac{\sigma_{F_1}}{F_1}\right)^2 + \left(\frac{\sigma_{F_2}}{F_2}\right)^2}$$

Examples. ND case:

$$\sigma_q^2 = \sum_i \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_i^2$$

Now we derive the "standard deviation in the mean" formula using the general case of uncorrelated error propagation

$$\langle x \rangle = \frac{1}{N} \sum_{i} x_{i}$$
 $\frac{\partial \langle x \rangle}{\partial x_{i}} = \frac{1}{N}$ $\sum_{i} \sigma_{x}^{2} = N$

$$\sigma_{\langle x \rangle}^2 = \sum_{i} \left(\frac{\sigma_x}{N}\right)^2 = \frac{N}{N^2} \sigma_x^2 = \frac{\sigma_x^2}{N}$$

$$\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{N}}$$

I. The Poisson distribution arises when we observe independent random events that are occurring at a constant rate, such the expected number of events is $\lambda > 0$.

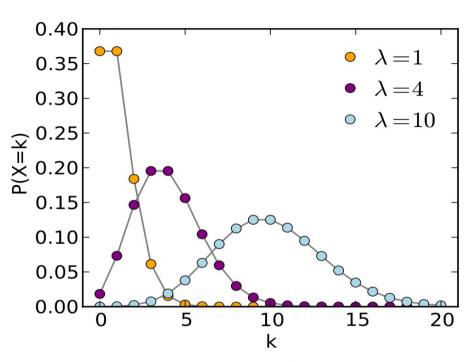
The Poisson probability for obtaining k (integer positive or zero) such events in the given interval is

$$p(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

For example: the flux of cosmic rays reaching the Earth is about 1 per cm².

If we have a detector with 20 cm² area we might expect on average 3.3 cosmic rays for each 10 seconds intervals.

But in actual experiment we would never clearly observe 3.3. But numbers like 3, 4 or sometimes 1 or 5 or 7.



We could produce a histogram showing how many times we observed exactly k cosmic rays in our 10 second interval. If we divide such histogram by total numbers of time intervals we would derive the Poisson probability distribution for the cosmic rays.

! If we have an observational data which is distributed by Poisson distribution (e.g. number of photons in the given interval of time) then we can expect following statistical characteristics:

Mean:
$$\langle x \rangle = \lambda$$

Deviation:
$$\langle \sigma_x \rangle = \sqrt{\lambda}$$

For example: we have in mean N photons per second. Statistical variability of this flux would be lie $\pm \sqrt{N}$ interval

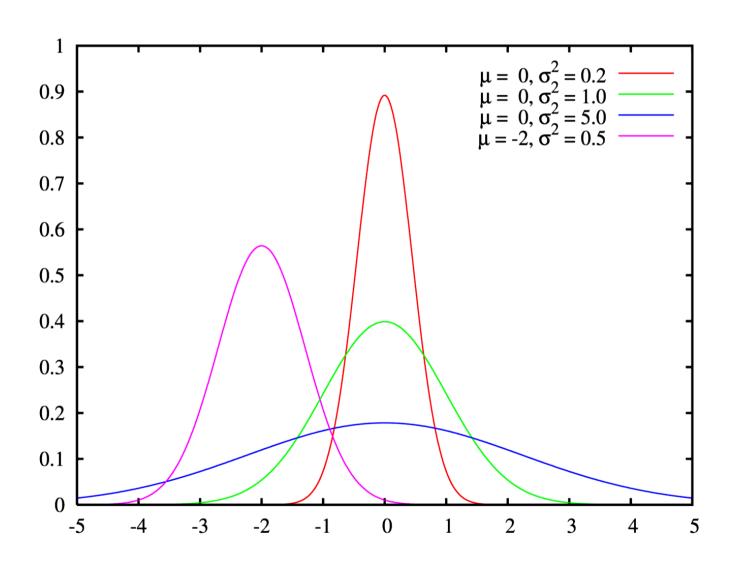
We can also calculate **the signal-to-noise ratio** (shot noise) using these relations:

$$SNR = \frac{\lambda}{\sigma} = \frac{N}{\sqrt{N}} = \sqrt{N}$$

II. A **normal distribution** in a variate x with mean μ and variance σ^2 is a statistic distribution with probability density function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

It is called also **Gaussian distribution** or **'bell curve'** because of the shape



! Random variates with unknown distributions are often assumed to be normal, especially in physics and astronomy.

it is often a good approximation due to a result known as the central limit theorem.

This theorem states that the mean of any set of variates with any distribution having a finite mean and variance tends to the normal distribution.

! The formulas for the mean and standard deviation

$$\langle x \rangle = \frac{1}{N} \sum_{i} x_{i}$$
 $\sigma_{x} = \sqrt{\frac{1}{N-1}} \sum_{i} (x_{i} - \langle x \rangle)^{2}$

supposes that the data is normally distributed

In case of normally distributed data we would expect that

```
68% of the points will lie within \pm 1\sigma
```

95% of the points will lie within $\pm 2\sigma$

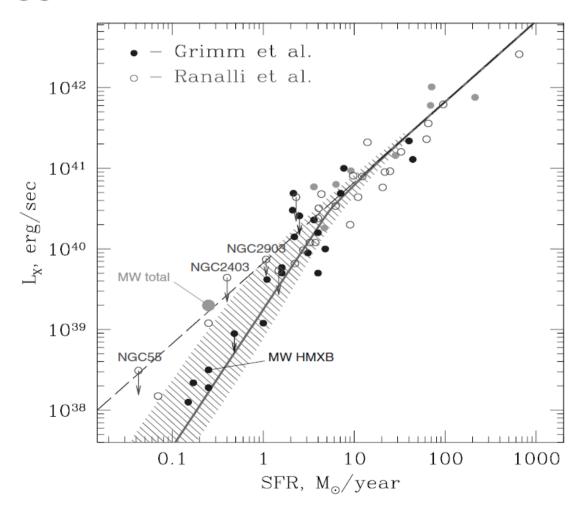
99.7% of the points will lie within $\pm 3\sigma$

Usually we accept a variation as statistically significant only if it is more than 3σ from the mean

Connection between distributions

Poisson distribution becomes normal when

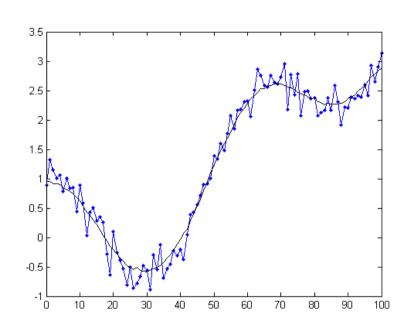
$$\lambda \to \infty$$



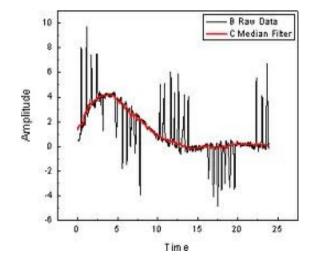
Filtering the data

I. Moving average

$$y[i] = \frac{1}{N} \sum_{j=0}^{N-1} x[i-j]$$



II. Median



Median and mean

Median over sinusoid

Moving average over sinusoid

