Convection is the mass motion of gas
elements - only occurs when temperature
gradient exceeds some critical value.

We can derive an expression for this.

Consider a convective element at distance r
from the centre of star. Element is in
equilibrium with the surrounding.

Now let’s suppose it rises to r+d6r. Element
expands to stay in pressure balance with the
new environment, P(r) and p(r) are reduced
to P+ 6P and p + 6p.

But these may not generally equal the new
surrounding gas conditions.

Define those as P + AP and p + 4p.

If gas element is denser than surroundings at r + ¢r then will sink (i.e.
If it is less dense then it will keep on rising — convectively unstable.

Convective element of stellar material

Element
rep L FoP
p+op

i
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stable).




Convection (2)

Whether or not this condition is satisfied depends on two things:
e The rate at which the element expands due to decreasing pressure
e The rate at which the density of the surroundings decreases with height

Let's make two assumptions
1. The elementrises adiabatically, i.e. no heat is exchanged with the surrounding;

2. The elementrises at a speed much less than the sound speed.
During motion, sound waves have time to smooth out the pressure differences between the
element and the surroundings. Hence 67 = AP at all times.

The first assumption means that the element must obey the adiabatic relation between
pressure and volume

PVY = constant

where y=c¢, / ¢, is the adiabatic index or heat capacity ratio defined as
specific heat (i.e. the energy to raise temperature of 1 g of material by 1K)
at constant pressure, divided by specific heat at constant volume.




Convection (3)

Given that I/ is inversely proportional to p, we can write

p_V = constant

Hence equating the term at r and r+4dr:
P+6P P
(p+8p) pY

If 6 is small, we can expand (p + 8p )" using the binomial theorem as follows
(p+ 6p)’~ pr+y6p p’’. Combining last two expressions we obtain

P
= —0P
op yP6

Now we need to evaluate the change in density of the surroundings, Ap.

Let’s consider a very small rise of 6r

d
Ap=d—':6r




Convection (4)

And substituting these expressions for 6 o and Ap into the condition for convective instability
derived above:

¥ ptdp<p+dp

p P sp < d—par dp
6,0 = ]/_PSP ]/P dr Ap = EST

And this can be rewritten by recalling our 2"? assumption that element will remain at the same
pressure as its surroundings, so that in the limit
6P _dP
Sr  dr
dP d
p - p
yPdr dr

or - 0,

The LHS is the density gradient that would exist in the surroundings if they had an adiabatic
relation between density and pressure. RHS is the actual density in the surroundings.

We can convert this to a more useful expression, by first dividing both sides by d 7/dr.
Note that d #/dr is negative, hence the inequality sign must change.




Convection (5)

dp dP d
P dr P dp
yP dr’ dr yP  dP
P\dp 1 dlnp 1
—|—=<- or —
p)dP vy dinP vy

For an ideal gas in which radiation pressure is negligible (where p is the mean molecular
weight of particles in the stellar material in unit of proton mass 1, )

kT
P = P
Hmy
And can differentiate to give

= InP=Inp+InT + const

dP_dp_I_dT 1_dlnp+dlnT
P p 17 % "TdmP dnp

And combining this with the equation above gives ....




Schwarzschild condition for occurrence of convection

PdT dInT )/—1
T dP dlnP y

which is the Schwarzschild condition for the occurrence of
convection (in terms of the temperature gradient).

A gas is convectively unstable if the actual temperature gradient
is steeper than the adiabatic gradient. If the condition is
satisfied, then large scale rising and falling motions transport
energy upwards.




Condition for occurrence of convection

A gas is convectively unstable if the actual temperature gradient is steeper than the
adiabatic gradient. The criterion can be satisfied in two ways:

1. The temperature gradient is very steep

For example, if a large amount of energy is released at the centre of a star, it may
require a large temperature gradient to carry the energy away. Hence where
nuclear energy is being released, convection may occur.

2. The ratio of specific heats y is close to unity

Alternatively, in the cool outer layers of a star, gas may only be partially ionized,
hence much of the heat used to raise the temperature of the gas goes into
ionization and hence the specific heat of the gas at constant I/ is nearly the same
as the specific heat at constant 7 (because 7~const), and y~1.

In such a case, a star can have a cool outer convective layer. We will come back to
the issues of convective cores and convective outer envelopes later.




Condition for occurrence of convection

Convection is an extremely complicated subject, and it is true to say that the lack of a
good theory of convection is one of the worst defects in our present studies of stellar
structure and evolution.

We know the conditions under which convection is likely to occur but don’t know
how much energy is carried by convection.

Fortunately, we will see that we can often find occasions where we can manage
without this knowledge.




Influence of convection

Let’s back to the equations of stellar structure.

Ideally, we would like to know exactly how much energy is transported by convection - but
lack of a good theory makes it difficult to predict exactly. Fully self-consistent models of
stellar convection are an active area of research and require considerable computational
resources to accurately capture the three-dimensional fluid dynamics.

However, it can be shown that even a very small difference between the actual temperature
gradient and adiabatic gradient is sufficient to carry all energy. This suggests that the actual
gradient is not greatly in excess of the adiabatic gradient. We can assume that the
temperature gradient has exactly the adiabatic value in a convective region in the interior
of a star and hence can rewrite the condition of occurrence of convection in the form

dinT y-1
dlnP vy

Thus, the simplest model of convection is to assume that the process is highly efficient - so
much so that it drives the system to saturate the Schwarzschild criterion.




Equations of stellar structure in a convective region

Thus, in a convective region, we must solve the four differential equations,

together with equations for £and P: , ar _ 1
dm  4nmr?p
o &P _ _ Gm
The equation for luminosity due to radiative transport is ZT e
still true: ® —=¢
2 4 3 B
md:_256><7t osp 7 T> dT _ PdT _y-1
3KR dm TdP  y

And once the other equations have been solved, Z_,, can be
calculated. This can be compared with L (from dZ/dm= ¢) and the difference gives
the value of luminosity due to convective transport 2., =L-L 4

conv
In solving the equations of stellar structure, the equations appropriate to a convective
region must be switched on whenever the temperature gradient reaches the
adiabatic value, and switched off when all energy can be transported by radiation.




We have derived the 4th equation to describe the stellar structure and explored
the ways to solve these equations.

As they are not time dependent, we must iterate with the calculation of changing
chemical composition to determine short steps in the lifetime of stars. The crucial
changing parameter is the H/He content of the stellar core (and afterwards, He
burning will become important - to be explored in next lectures).

We have discussed the boundary conditions applicable to the solution of the
equations and made approximations, that do work with real models.

We have also derived the condition for convection and explored the influence of
convection on energy transport within stars. We have shown that it must be
considered, but only in areas where the temperature gradient approaches the
adiabatic value. In other areas, the energy can be transported by radiation alone
and convection is not required. We saw that convection may be important in hot
stellar cores and cool outer envelopes, but that a good quantitative theory is
lacking.

The next lectures will explore stellar interiors and the nuclear reactions.



The equations of stellar
structure - 11

EQUATION OF STATE (EOS)
STELLAR OPACITY




We have 4 differential equations of stellar structure.

Accurate expressions for pressure, opacity and
energy generation are extremely complicated, but we
can find simple approximate forms.

Equations of stellar structure too complicated to find
exact analytical solution, hence must be solved with
computer.

Sometimes simplifications can be made to find
analytical solutions that still have most of the
physics.



The equations of stellar structure

i

— 2
° dr nrep (T') o r=radius
e P=pressureatr
° ap(r) = — Gn;t p (r) e m =mass of material within r
ar r o p=densityatr
dL(r) e L =luminosity at r (rate of energy flow across
¢ ar = 4nr 2 P (7") & (7') sphere of radius r)
N e T =temperature atr
o drT(r) — 3 p(r)KR(T) L (7”) * Ky = Rosseland mean opacity at r
dr 64mar? T3(r) &= energy release per unit mass per unit time
. pdr _ y-1 -
T dP 14

To these four differential equations we need to add three equations connecting the pressure,
the opacity, and the energy production rate of the gas with its density, temperature, and
composition:

P =P (p, T chemical composition) —— usually called the equation of state (EOS)
kg = Kz ( p, T chemical composition)

€ =¢(p, T chemical composition)




» The equation of state (EOS) describes the
microscopic properties of stellar matter for given
density p, temperature 7"and composition X..

o It is usually expressed as the function that relates the
pressure P to p, T, and mean molecular weight 1 at
any place in the star.

» Since it is a solely an internal property of the gas, it

can, in principle, be computed once externally, and
used via a lookup table, 1.e., ,.c = P (p, 1, T').



* We have seen that stellar gas is ionized plasma, and although density is so
high that typical inter-particle spacing is of the order of an atomic radius,
the effective particle size is more like a nuclear radius (105) times smaller.

» Thus, interior of a star contains a mixture of ions, electrons, and radiation
(photons) For most stars (except for very low mass stars and stellar
remnants), the ions and electrons can be treated as an ideal gas and
quantum effects can be neglected.

* The net pressure can be divided into three components, pressure from ions,
pressure from electrons, and pressure from radiation.

Total pressure: P=P,+ P, + P, 4=P gas T Prad

P is the pressure of the ions
is the electron pressure

Pe
is the radiation pressure

P

rad

However, P,,. may not obey the ideal gas law due to the eftects of degeneracy.



EOS of an ideal gas

The equation of state for an ideal gas is:

Pyas = nkT

where 7is concentration (number of particles per cm3 = n, + 1, where 77, and 7, are
the number densities of ions and electrons respectively), 7" is the temperature,
k is Boltzmann's constant.

But we want this equation in the form: P = P (p, T, chemical composition)
This can be written as:

pkT  RpT _
Poas = = where ‘R = — isthe gas constant, and
Hmy, U my,
4 = mean molecular weight,

i.e. the average mass of particles in unit of proton mass 1,




Mean molecular weight (1)

The mean molecular weight iz (the average mass of particles in unit
of proton mass m,) depends upon the composition of the gas and the
state of ionization. For example:

e Neutral hydrogen: ;=1
e Fully ionized hydrogen: ;= 0.5

An exact solution is complex, depending on fractional ionization of all
the elements in all parts of the star.

For simplicity, let’s now assume that all of the material in the star is
fully ionized. This is justified as hydrogen and helium are most
abundant and they are certainly fully ionized in stellar interiors
(however, this assumption will break down near stellar surface).




Mean molecular weight (2)

Denote abundances of different elements per unit mass by:

X = fraction of material by mass of H

Y = fraction of material by mass of He

Z. = fraction of material by mass of all heavier elements (“metals”)

X+Y+72=1

Hence in 1 cm? of stellar gas of density p, there is mass Xx(p of H), Yx(p of
He), Z x(p of metals). In a fully ionized gas,

H gives 2 particles per my
He gives 3 /4 particles per my (« particle, plus two e")
Metals, average mass Amy, give ~1/2 particles per my
(12C has nucleus plus 6e- = 7/12)
(160 has nucleus plus 8e-=9/16)
where A is the atomic weight of the species.




Mean molecular weight (3)

If the density of the plasma is p, then add up number densities of hydrogen, helium, and metal
nuclei, plus electrons from each species:

| H | He | _memls _

Number Xp Yp Zp
density of nuclei = amy Amy,
Number density Xp 2Yp A Zp
of electrons — 5 X

my 4m H 2 AmH

The total number of particles per cm?3 is then given by the sum:

p
Hmy

Xp 3Yp 2Zp+AZ
noXP  3Yp 2Zp pzp[

3 1
2X+-Y+=-Z7| =
my 4mH 2AmH my ]

4 2
...assuming that A>>1

Thus,




Mean molecular weight (4)

— 2X+3Y+1Z_1
H= R

This is a good approximation to x except in cool, outer stellar regions.

For solar abundances, X =0.73, Y = 0.25, Z = 0.02, and therefore = 0.60, i.e. the mean mass of
particles in a star of solar composition is a little over half the mass of the proton.

In the central regions of the Sun, about half of the hydrogen has already been converted into
helium by nuclear reactions, and as a result X = 0.34,Y = 0.64, and Z = 0.02, giving 4 = 0.85.

When Z is negligible: Y =1 — X; = 4/(3 + 5X)

The electron number density 17, plays a considerable role for the properties of the gas.
It is convenient to introduce the mean molecular weight per electron, z,, such that

p 2
- =~
He = T x
Prove it!

Ne =
UeMpg




The accurate calculation of mean molecular weight . requires knowledge of the chemical
composition of the material and the ionization fraction. To calculate ionization fraction, one
needs the Saha equation, which we will derive later, in the Stellar atmospheres part of this

course .
Ni  2gF (2mm kT)3/?

Nl Negl h3

e_Xion/kT

where m, is the mass of the electron, y,,,is the ionization energy, /;* and /V, are the number
density of ions and neutral atoms in their ground state, /V, is the electron number density,
2,7 and g, are the statistical weight of the ground state of the ion and neutral atom.

In general, the Saha equation can be used to compute ionization fractions over most of the
star. It does, however, require that the gas be in the thermodynamic equilibrium. This is true
throughout almost the whole star, as at high densities, collisions will control the level
populations. This approximation only breaks down in the solar corona, where the densities
become very low.

However, the Saha equation also breaks down in the centers of stars, where high densities
cause the ionization energies of atoms to be reduced. Indeed, if the mean distance between
atoms is d, then there can be no bound states with radii greater than ~d/2). In practice, the
Saha equation begins to break down at nuclear distances of ~10a, (~10 Bohr radii).

To correct for this effect, the Saha equation is normally used until it begins to show
decreasing ionization fractions toward the center of the star. When this happens, complete
ionization is assumed.



An ordinary classical gas: Py, T — OasT — 0

Simultaneously, the mean speed of particles in the gas also goes to zero:
v =.2kT/m

The momenta are given by: p,=mv,; p.=mv,; p,=mv,

.. if we plot the momenta of particles in a 3D space of p,, p,, and p, then

as T decreases the particles become concentrated near the origin:

Py . High T Py Llow T
® [ ]
[ ] ® [ ]
® @ @ ..
c®ee

Py Px



Degeneracy Pressure (2)

At low enough temperatures / high enough densities, the concentration of particles
with similar (low) momenta would violate the Pauli exclusion principle:

No two electrons can occupy the same quantum state
i.e. have the same momentum, spin, and location.

To avoid violating the exclusion principle, electrons in a dense, cold gas must have
larger momenta than we would predict classically.

Since the pressure P is mean rate of transport of momentum across unit area
%0 ...where n(p)dp is the number

P = 1 j vpn(p)dp of particles with momentum

3 ; between p and p+dp

... larger momentum means higher pressure.

This quantum mechanical source of pressure is degeneracy pressure.




Degeneracy Pressure (3)

This quantum mechanical source of pressure is degeneracy pressure.
We will discuss it later.

k
Pigear = EPT

e Non-relativistic degeneracy pressure (speeds v << c) :

1 A polytrope of
_ 5/3 _ 1+ - AP p
Pdeg = Kip Kip™m index n=1.5

O K is constant
O Does not depend upon temperature for low enough T
O Depends upon composition via the relation between N, and p

e Relativistic degeneracy pressure : A polytrope of
Pleg = K,p*/3 index n=3

O K, is another constant

o Equation of state for relativistic degenerate matter, which applies at high density. This is a “softer” equation of
state, since P rises more slowly with increasing density than for the non-relativistic case.




When do the different pressures matter?

log (T / K)
Radiation
8 | pressure Important
diagram!

1
I
1
1
' Degenerate,
i
1

6 -
relativistic
I
4 Degenerate, |
nhon-relativistic!'
log (p / gcm3)
-2 2 6 10

Different types of star occupy different portions of the plane:

* Solar-type stars - ideal gas throughout

e Massive stars - radiation pressure

. (and brown) dwarfs - non-relativistic degeneracy pressure

Relativistic degeneracy implies an unstable equation of state, so no stable stars in
that part of the plane.




Radiation Pressure

We have already showed before that radiation pressure can be neglected for Solar-type stars:
P.,q aT* /kTp puaT?

P, 3/um, 3Rp

~ 10~* (for the Sun)

But becomes very important for early-type stars due to the 7 sensitivity.

In which stars are gas and radiation pressure important?

From the virial theorem (see Lecture 3):

_ M P
T o« — = L2 o M2
R Py

i.e. Z_,becomes more significant in higher mass stars.

aT*)
P d — ~
- ERT3p . equal when T3 = i_m p radiation pressure
p,=—+ U dominated ___ slope1/3
o) log T T

-~7 gas pressure
dominated

log p




Effect of radiation pressure

For stars in which radiation pressure plays a non-negligible role we can write the
generalized form of the equation of hydrostatic support (Lecture 2):

dP(r)
T gp(r) = ap(r)
Then
dP(T) dPrad
= T = —gesr(Mp ()
From Lecture 6 (slide 169):
dPrad PKRr
=~ F = Gerr(r) =g+ . “F
Consider relative contributions of radiation and (ideal) gas pressures:

RTp 4

a
=,BP=T: Pradz(l_ﬁ)P=T

1/3 1 A polytrope
*31-8 3 L, 141 . HApolytrop
a B* p'i = P=Kp of index n=3

Exclude temperature: P = [ —
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