
Convection (1)
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Convection is the mass motion of gas 
elements – only occurs when temperature 
gradient exceeds some critical value. 
We can derive an expression for this.

Consider a convective element at distance r 
from the centre of star. Element is in 
equilibrium with the surrounding.

Now let’s suppose it rises to r+δr. Element 
expands to stay in pressure balance with the 
new environment, P(r) and ρ(r) are reduced 
to P + δP and ρ + δρ.

But these may not generally equal the new 
surrounding gas conditions.
Define those as P + ΔP and ρ + Δρ. 

If gas element is denser than surroundings at r + δr then will sink (i.e. stable).
If it is less dense then it will keep on rising – convectively unstable.



Convection (2)
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The condition for instability is therefore

ρ + δρ < ρ + Δρ

Whether or not this condition is satisfied depends on two things:
 The rate at which the element expands due to decreasing pressure
 The rate at which the density of the surroundings decreases with height

Let’s make two assumptions
1. The element rises adiabatically, i.e. no heat is exchanged with the surrounding;
2. The element rises at a speed much less than the sound speed. 

During motion, sound waves have time to smooth out the pressure differences between the 
element and the surroundings. Hence δP = ΔP at all times.

The first assumption means that the element must obey the adiabatic relation between 
pressure and volume

PV γ = constant

where γ =cp / cV  is the adiabatic index or heat capacity ratio defined as 
specific heat (i.e. the energy to raise temperature of 1 g of material by 1K) 
at constant pressure, divided by specific heat at constant volume.



Convection (3)
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Given that V  is inversely proportional to ρ , we can write

𝑃

𝜌𝛾
= constant

Hence equating the term at r  and r +δr :
𝑃 + 𝛿𝑃

𝜌 + 𝛿𝜌 𝛾
=

𝑃

𝜌𝛾

If δρ  is small, we can expand (ρ + δρ )γ  using the binomial theorem as follows

(ρ + δρ )γ~ ργ +γ δρ ργ-1 . Combining last two expressions we obtain

𝛿𝜌 =
𝜌

𝛾𝑃
𝛿𝑃

Now we need to evaluate the change in density of the surroundings, Δρ.

Let’s consider a very small rise of  δr

Δ𝜌 =
𝑑𝜌

𝑑𝑟
𝛿𝑟



Convection (4)
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And substituting these expressions for δρ and Δρ into the condition for convective instability 
derived above:

𝜌

𝛾𝑃
𝛿𝑃 <

𝑑𝜌

𝑑𝑟
𝛿𝑟

And this can be rewritten by recalling our 2nd assumption that element will remain at the same 
pressure as its surroundings, so that in the limit

𝛿𝑟 → 0,
𝛿𝑃

𝛿𝑟
=

𝑑𝑃

𝑑𝑟

𝜌

𝛾𝑃

𝑑𝑃

𝑑𝑟
<

𝑑𝜌

𝑑𝑟

The LHS is the density gradient that would exist in the surroundings if they had an adiabatic 
relation between density and pressure. RHS is the actual density in the surroundings. 

We can convert this to a more useful expression, by first dividing both sides by dP/dr. 
Note that dP/dr  is negative, hence the inequality sign must change.

ρ + δρ < ρ + Δρ

𝛿𝜌 =
𝜌

𝛾𝑃
𝛿𝑃 Δ𝜌 =

𝑑𝜌

𝑑𝑟
𝛿𝑟
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𝜌

𝛾𝑃
>

𝑑𝜌

𝑑𝑟
/

𝑑𝑃

𝑑𝑟
  

𝜌

𝛾𝑃
>

𝑑𝜌

𝑑𝑃

𝑃

𝜌

𝑑𝜌

𝑑𝑃
<

1

𝛾
 or 

𝑑 ln 𝜌

𝑑 ln 𝑃
<

1

𝛾

For an ideal gas in which radiation pressure is negligible (where 𝜇 is the mean molecular 
weight of particles in the stellar material in unit of proton mass mp )

𝑃 =
𝜌𝑘𝑇

𝜇𝑚𝑝
  ln 𝑃 = ln 𝜌 + ln 𝑇 + const

And can differentiate to give

𝑑𝑃

𝑃
=

𝑑𝜌

𝜌
+

𝑑𝑇

𝑇
 or 1 =

𝑑 ln 𝜌

𝑑 ln 𝑃
+

𝑑 ln 𝑇

𝑑 ln 𝑃

And combining this with the equation above gives ….
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𝑃

𝑇

𝑑𝑇

𝑑𝑃
=

𝑑 ln 𝑇

𝑑 ln 𝑃
>

𝛾 − 1

𝛾

which is the Schwarzschild condition for the occurrence of 
convection (in terms of the temperature gradient). 

A gas is convectively unstable if the actual temperature gradient 
is steeper than the adiabatic gradient. If the condition is 
satisfied, then large scale rising and falling motions transport 
energy upwards.



Condition for occurrence of convection
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A gas is convectively unstable if the actual temperature gradient is steeper than the 
adiabatic gradient. The criterion can be satisfied in two ways: 

1. The temperature gradient is very steep

For example, if a large amount of energy is released at the centre of a star, it may 
require a large temperature gradient to carry the energy away. Hence where 
nuclear energy is being released, convection may occur.

2. The ratio of specific heats γ  is close to unity 

Alternatively, in the cool outer layers of a star, gas may only be partially ionized, 
hence much of the heat used to raise the temperature of the gas goes into 
ionization and hence the specific heat of the gas at constant V  is nearly the same 
as the specific heat at constant P  (because T~const), and γ~1.

In such a case, a star can have a cool outer convective layer. We will come back to 
the issues of convective cores and convective outer envelopes later.



Condition for occurrence of convection
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Convection is an extremely complicated subject, and it is true to say that the lack of a 
good theory of convection is one of the worst defects in our present studies of stellar 
structure and evolution. 

We know the conditions under which convection is likely to occur but don’t know 
how much energy is carried by convection.

Fortunately, we will see that we can often find occasions where we can manage 
without this knowledge.



Influence of convection
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Let’s back to the equations of stellar structure.

Ideally, we would like to know exactly how much energy is transported by convection – but 
lack of a good theory makes it difficult to predict exactly. Fully self-consistent models of 
stellar convection are an active area of research and require considerable computational 
resources to accurately capture the three-dimensional fluid dynamics. 

However, it can be shown that even a very small difference between the actual temperature 
gradient and adiabatic gradient is sufficient to carry all energy. This suggests that the actual 
gradient is not greatly in excess of the adiabatic gradient. We can assume that the 
temperature gradient has exactly the adiabatic value in a convective region in the interior 
of a star and hence can rewrite the condition of occurrence of convection in the form

𝑑 ln 𝑇

𝑑 ln 𝑃
=

𝛾 − 1

𝛾

Thus, the simplest model of convection is to assume that the process is highly efficient – so 
much so that it drives the system to saturate the Schwarzschild criterion.



Equations of stellar structure in a convective region

190

Thus, in a convective region, we must solve the four differential equations,

together with equations for ε and P :

The equation for luminosity due to radiative transport is 
still true:

𝐿𝑟𝑎𝑑 = −
256 × 𝜋2 𝜎𝑆𝐵 𝑟4 𝑇3

3𝜅𝑅

𝑑𝑇

𝑑𝑚

And once the other equations have been solved, Lrad can be 
calculated. This can be compared with L (from dL/dm= ε) and the difference gives 
the value of luminosity due to convective transport Lconv=L-Lrad

In solving the equations of stellar structure, the equations appropriate to a convective 
region must be switched on whenever the temperature gradient reaches the 
adiabatic value, and switched off when all energy can be transported by radiation.


𝑑𝑟

𝑑𝑚
=

1

4𝜋𝑟2𝜌


𝑑𝑃

𝑑𝑚
= −

𝐺𝑚 

4𝜋𝑟4


𝑑𝐿

𝑑𝑚
= ε


𝑃

𝑇

𝑑𝑇

𝑑𝑃
=

𝛾−1

𝛾



Summary
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 We have derived the 4th equation to describe the stellar structure and explored 
the ways to solve these equations.

 As they are not time dependent, we must iterate with the calculation of changing 
chemical composition to determine short steps in the lifetime of stars. The crucial 
changing parameter is the H/He content of the stellar core (and afterwards, He 
burning will become important – to be explored in next lectures).

 We have discussed the boundary conditions applicable to the solution of the 
equations and made approximations, that do work with real models.

 We have also derived the condition for convection and explored the influence of 
convection on energy transport within stars. We have shown that it must be 
considered, but only in areas where the temperature gradient approaches the 
adiabatic value. In other areas, the energy can be transported by radiation alone 
and convection is not required. We saw that convection may be important in hot 
stellar cores and cool outer envelopes, but that a good quantitative theory is 
lacking.

 The next lectures will explore stellar interiors and the nuclear reactions.
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The equations of stellar 
structure - II



Introduction
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 We have 4 differential equations of stellar structure.

 Accurate expressions for pressure, opacity and 
energy generation are extremely complicated, but we 
can find simple approximate forms.

 Equations of stellar structure too complicated to find 
exact analytical solution, hence must be solved with 
computer.

 Sometimes simplifications can be made to find 
analytical solutions that still have most of the 
physics.



To these four differential equations we need to add three equations connecting the pressure, 
the opacity, and the energy production rate of the gas with its density, temperature, and 
composition:

P = P ( ρ, T, chemical composition)
κR = κR ( ρ, T, chemical composition)
ε = ε ( ρ, T, chemical composition)

The equations of stellar structure
194


𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟


𝑑𝑃(𝑟)

𝑑𝑟
= −

𝐺𝑚 

𝑟2 𝜌 𝑟


𝑑𝐿 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟 ε 𝑟


𝑑𝑇(𝑟)

𝑑𝑟
= −

3

64𝜋𝜎𝑟2

𝜌(𝑟)𝜅𝑅(𝑟)

𝑇3(𝑟)
𝐿(𝑟)


𝑃

𝑇

𝑑𝑇

𝑑𝑃
=

𝛾−1

𝛾

 r = radius

 P = pressure at r

 m = mass of material within r

 ρ = density at r

 L = luminosity at r (rate of energy flow across 
sphere of radius r)

 T = temperature at r

 κR = Rosseland mean opacity at r

 ε = energy release per unit mass per unit time

usually called the equation of state (EOS)



The equation of state (EOS)
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 The equation of state (EOS) describes the 
microscopic properties of stellar matter for given 
density ρ,  temperature T and composition Xi . 

 It is usually expressed as the function that relates the 
pressure P to ρ, T, and mean molecular weight µ at 
any place in the star. 

 Since it is a solely an internal property of the gas, it 
can, in principle, be computed once externally, and 
used via a lookup table, i.e., 𝑃gas = P (ρ, µ, T ).



EOS in stars
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 We have seen that stellar gas is ionized plasma, and although density is so 
high that typical inter-particle spacing is of the order of an atomic radius, 
the effective particle size is more like a nuclear radius (105) times smaller. 

 Thus, interior of a star contains a mixture of ions, electrons, and radiation 
(photons). For most stars (except for very low mass stars and stellar 
remnants), the ions and electrons can be treated as an ideal gas and 
quantum effects can be neglected.

 The net pressure can be divided into three components, pressure from ions,  
pressure from electrons, and pressure from radiation.

Total pressure:   P = Pi + Pe + Prad = Pgas + Prad

However, Pgas may not obey the ideal gas law due to the effects of degeneracy.

Pi is the pressure of the ions
Pe    is the electron pressure
Prad is the radiation pressure



EOS of an ideal gas
197

The equation of state for an ideal gas is:

𝑃gas = 𝑛𝑘𝑇

where n is concentration (number of particles per cm3 = nI + ne, where nI and ne are 
the number densities of ions and electrons respectively), T  is the temperature, 
k  is Boltzmann's constant.

But we want this equation in the form: P = P (ρ, T, chemical composition)
This can be written as:

𝑃gas =
𝜌𝑘𝑇

𝜇𝑚𝑝
=

ℜ𝜌𝑇

𝜇
 where ℜ =

𝑘

𝑚𝑝
 is the gas constant, and

μ = mean molecular weight, 
i.e. the average mass of particles in unit of proton mass mp.



Mean molecular weight (1)
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The mean molecular weight μ  (the average mass of particles in unit 
of proton mass mp) depends upon the composition of the gas and the 
state of ionization. For example:

• Neutral hydrogen: μ = 1

• Fully ionized hydrogen: μ = 0.5

An exact solution is complex, depending on fractional ionization of all 
the elements in all parts of the star.

For simplicity, let’s now assume that all of the material in the star is 
fully ionized. This is justified as hydrogen and helium are most 
abundant and they are certainly fully ionized in stellar interiors 
(however, this assumption will break down near stellar surface).



Mean molecular weight (2)
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Denote abundances of different elements per unit mass by:
X = fraction of material by mass of H
Y = fraction of material by mass of He
Z = fraction of material by mass of all heavier elements (“metals”)

X + Y + Z = 1

Hence in 1 cm3 of stellar gas of density ρ, there is mass X(ρ of H), Y(ρ of 
He), Z (ρ of metals). In a fully ionized gas,
H gives 2 particles per mH

He gives 3/4 particles per mH (α particle, plus two e–)
Metals, average mass AmH, give ~1/2 particles per mH 

(12C has nucleus plus 6e– = 7/12)
(16O has nucleus plus 8e– = 9/16)

where A is the atomic weight of the species.



Mean molecular weight (3)
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If the density of the plasma is ρ, then add up number densities of hydrogen, helium, and metal 
nuclei, plus electrons from each species:

The total number of particles per cm3 is then given by the sum: 

𝑛 = 2
𝑋𝜌

𝑚𝐻
+

3

4

𝑌𝜌

𝑚𝐻
+

2𝑍𝜌 + 𝑨𝑍𝜌

2𝑨𝑚𝐻
≈

𝜌

𝑚𝐻
2𝑋 +

3

4
𝑌 +

1

2
𝑍 =

𝜌

μ 𝑚𝐻

…assuming that A≫1

Thus,

μ = 2𝑋 +
3

4
𝑌 +

1

2
𝑍

−1

H He metals

Number
density of nuclei

𝑋𝜌

𝑚𝐻

𝑌𝜌

4𝑚𝐻

𝑍𝜌

𝐴𝑚𝐻

Number density
of electrons

𝑋𝜌

𝑚𝐻

2𝑌𝜌

4 𝑚𝐻

𝐴

2
×

𝑍𝜌

𝐴𝑚𝐻



Mean molecular weight (4)
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μ = 2𝑋 +
3

4
𝑌 +

1

2
𝑍

−1

This is a good approximation to μ except in cool, outer stellar regions.

For solar abundances, X = 0.73, Y = 0.25, Z = 0.02, and therefore μ = 0.60, i.e. the mean mass of 
particles in a star of solar composition is a little over half the mass of the proton.

In the central regions of the Sun, about half of the hydrogen has already been converted into 
helium by nuclear reactions, and as a result X = 0.34, Y = 0.64, and Z = 0.02, giving μ = 0.85.

When Z is negligible: Y = 1 − X; μ = 4/(3 + 5X)

The electron number density ne  plays a considerable role for the properties of the gas. 
It is convenient to introduce the mean molecular weight per electron, μe, such that

𝑛𝑒 =
𝜌

𝜇𝑒𝑚𝐻
 ⟹  μ𝑒 ≈

2

1 + 𝑋

Prove it!



The Ionization Fraction
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 The accurate calculation of mean molecular weight μ requires knowledge of the chemical 
composition of the material and the ionization fraction. To calculate ionization fraction, one 
needs the Saha equation, which we will derive later, in the Stellar atmospheres part of this 
course :

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

where me is the mass of the electron, ion is the ionization energy, N1
+ and N1 are the number 

density of ions and neutral atoms in their ground state, Ne is the electron number density , 
g1

+ and g1 are the statistical weight of the ground state of the ion and neutral atom.

 In general, the Saha equation can be used to compute ionization fractions over most of the 
star. It does, however, require that the gas be in the thermodynamic equilibrium. This is true 
throughout almost the whole star, as at high densities, collisions will control the level 
populations. This approximation only breaks down in the solar corona, where the densities 
become very low.

 However, the Saha equation also breaks down in the centers of stars, where high densities 
cause the ionization energies of atoms to be reduced. Indeed, if the mean distance between 
atoms is d, then there can be no bound states with radii greater than ∼d/2). In practice, the 
Saha equation begins to break down at nuclear distances of ∼10a0  (~10 Bohr radii). 

 To correct for this effect, the Saha equation is normally used until it begins to show 
decreasing ionization fractions toward the center of the star. When this happens, complete 
ionization is assumed.



Degeneracy Pressure (1)
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 An ordinary classical gas: 𝑃gas ∝ 𝑇 → 0 as 𝑇 → 0

 Simultaneously, the mean speed of particles in the gas also goes to zero: 

𝑣 = 2𝑘𝑇/𝑚

 The momenta are given by:  px=mvx ; py=mvy ; pz=mvz

 … if we plot the momenta of particles in a 3D space of px, py, and pz then 
as T decreases the particles become concentrated near the origin:



Degeneracy Pressure (2)
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At low enough temperatures / high enough densities, the concentration of particles 
with similar (low) momenta would violate the Pauli exclusion principle:

No two electrons can occupy the same quantum state

i.e. have the same momentum, spin, and location.

To avoid violating the exclusion principle, electrons in a dense, cold gas must have 
larger momenta than we would predict classically. 

Since the pressure P  is mean rate of transport of momentum across unit area

𝑃 =
1

3
න

0

∞

𝑣𝑝𝑛 𝑝 𝑑𝑝

… larger momentum means higher pressure. 

This quantum mechanical source of pressure is degeneracy pressure.

…where n(p)dp is the number 
of particles with momentum 
between p and p+dp



Degeneracy Pressure (3)
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This quantum mechanical source of pressure is degeneracy pressure. 
We will discuss it later.

 Non-relativistic degeneracy pressure (speeds v ≪ c) :

 𝑃deg = 𝐾1𝜌5/3 = 𝐾1𝜌1+
1
𝑛

 K1 is constant

 Does not depend upon temperature for low enough T

 Depends upon composition via the relation between Ne and ρ 

 Relativistic degeneracy pressure :
𝑃deg = 𝐾2𝜌4/3

 K2 is another constant

 Equation of state for relativistic degenerate matter, which applies at high density. This is a “softer” equation of 
state, since P rises more slowly with increasing density than for the non-relativistic case.

A polytrope of 
index n=3

A polytrope of 
index n=1.5

A relation of the form 𝑃 = 𝐾𝜌1+
1

𝑛 where  K and n  are constants is called a polytropic relation, and n  is the polytropic index.

𝑃𝑖𝑑𝑒𝑎𝑙 =
𝑘

𝜇𝑚𝑝
𝜌𝑇



When do the different pressures matter?
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Different types of star occupy different portions of the plane:

 Solar-type stars - ideal gas throughout

 Massive stars - radiation pressure

 White (and brown) dwarfs - non-relativistic degeneracy pressure

Relativistic degeneracy implies an unstable equation of state, so no stable stars in 
that part of the plane.



Radiation Pressure
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We have already showed before that radiation pressure can be neglected for Solar-type stars:

𝑃𝑟𝑎𝑑

𝑃𝑔
= ൘

𝑎𝑇4

3

𝑘𝑇𝜌

𝜇𝑚𝑝
=

𝜇𝑎

3ℜ

𝑇3

𝜌
≈ 10−4 (for the Sun)

But becomes very important for early-type stars due to the T 4 sensitivity.

In which stars are gas and radiation pressure important?

𝑃𝑟𝑎𝑑 =
𝑎𝑇4

3

𝑃𝑔 =
ℜ𝑇𝜌

𝜇

 equal when 𝑇3 =
3ℜ

𝑎𝜇
𝜌 

From the virial theorem (see Lecture 3):  

ത𝑇 ∝
𝑀

𝑅
 

𝑃𝑟𝑎𝑑

𝑃𝑔
∝ 𝑀2

i.e. Prad becomes more significant in higher mass stars. 



Effect of radiation pressure
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For stars in which radiation pressure plays a non-negligible role we can write the 
generalized form of the equation of hydrostatic support (Lecture 2):

𝑑𝑃(𝑟)

𝑑𝑟
+ 𝑔𝜌 𝑟 = 𝑎𝜌 𝑟

Then
𝑑𝑃(𝑟)

𝑑𝑟
= −𝑔𝜌 𝑟 −

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −𝑔eff 𝑟 𝜌 𝑟

From Lecture 6 (slide 169):
𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹 ⟹  𝑔eff 𝑟 = 𝑔 −

𝜅𝑅

𝑐
𝐹

Consider relative contributions of radiation and (ideal) gas pressures:

𝑃𝑔 = 𝛽𝑃 =
ℜ𝑇𝜌

𝜇
, 𝑃𝑟𝑎𝑑 = 1 − 𝛽 𝑃 =

𝑎𝑇4

3

Exclude temperature: 𝑃 =
ℜ

𝜇

4 3

𝑎

1−𝛽

𝛽4

1/3

𝜌4/3 ⟹  𝑃 = 𝐾𝜌1+
1

𝑛
A polytrope 
of index n=3
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