
Specific and mean Intensity
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From the previous lecture:

𝐼𝜆 =
𝐸𝜆

cos 𝜃  𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡

Let's try in another way:
 The (specific) intensity 𝑰𝝀 is a measure of brightness: 

𝐼𝜆 =
𝑑𝐸𝜆

cos 𝜃  𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡

𝑑𝜆, 𝑑𝜎, 𝑑𝜔, 𝑑𝑡 → 0                          dE diminishes to zero as well

 In this way, we define the specific intensity at a “point” on the surface, at a given time, in 
a direction 𝜃, at a wavelength 𝜆 - brightness.

The mean intensity J is the directional average of the specific intensity 
(over 4 steradians):

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔

Integrated over the whole unit sphere 
centered on the point of interest.



Mean intensity and Energy density
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 The mean intensity J is related to the energy density u:

 Energy radiated through area element 𝑑𝜎 during time 𝑑𝑡:

l = c 𝑑𝑡              dV = l 𝑑𝜎 = c 𝑑𝑡 𝑑𝜎
 Hence, the energy contained in volume element dV per

wavelength interval is:

𝑢𝜆𝑑𝑉𝑑= ර𝐼𝜆 𝑑𝜔 𝑑𝜆 𝑑𝜎 𝑑𝑡 = 4𝜋𝐽𝜆

𝑑𝑉

𝑐
𝑑𝜆

𝑢𝜆 =
4𝜋

𝑐
𝐽𝜆  

𝑒𝑟𝑔

𝑐𝑚3Å

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔

l
dV

d𝜎

d

𝑑𝐸𝜆 = 𝐼𝜆 𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡 

𝑢 = න
0

∞

𝑢𝜆 𝑑𝜆 =
4𝜋

𝑐
න

0

∞

𝐽𝜆 𝑑𝜆  
𝑒𝑟𝑔

𝑐𝑚3

Total radiation emerge in volume element



Flux (1)
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 From an observational point of view, we are generally more interested in the energy 
flux or flux ( L, L ) and the flux density ( F, F ). 
Flux density gives the power of the radiation per unit area and hence has 
dimensions of erg s-1 cm-2 Å-1 (or erg s-1 cm-2 Hz-1). 
Observed flux densities are usually extremely small and therefore (especially in 
radio astronomy) flux densities are often expressed in units of the Jansky (Jy), 
where 1 Jy=10-23 erg s-1 cm-2 Hz-1.

 You should be aware - and beware - that different authors define the terms flux 
density, flux and intensity differently, and they are sometimes used 
interchangeably! 

 We will often call flux density as just flux.

 Standard definition: 
Flux describes any effect that appears to pass or travel through a surface or 
substance. In transport phenomena (radiative transfer, heat transfer, mass transfer, 
fluid dynamics), flux is defined as the rate of flow of a property per unit area, which 
has the dimensions [quantity][time]−1 [area]−1. 
 For example, the magnitude of a river's current, i.e. the amount of water that flows 

through a cross-section of the river each second is a kind of flux.



In radiative transfer, flux is related to the intensity 
(“specific” is often omitted):

 Flux F, is a measure of the net energy flow across an area 𝑑𝜎, over a 
time 𝑑𝑡, in a 𝑑𝜆. The only directional significance is whether the energy 
crosses 𝑑𝜎 from the top or from the bottom. Then we can write: 

The solid angle 𝑑𝜔 appears 
for 𝑰𝝀 but not for 𝑭𝝀

𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔

Flux (2)
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𝐹𝜆 =
ׯ 𝑑𝐸𝜆

𝑑𝜆 𝑑𝜎 𝑑𝑡
 Integrated over all directions.

𝐼𝜆 =
𝑑𝐸𝜆

cos 𝜃𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡
 

substitute

𝑒𝑟𝑔

Å 𝑐𝑚2 𝑠

Thus, flux F is the projection of the specific intensity I 

in the radial direction (integrated over all solid angles)

The amount of energy going through 1 cm2 
per second per 1Å into the solid angle d 
in the direction inclined by the angle   to 
the normal of the area.



Flux (3)
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Expressing d by means of θ and φ,

If there is no azimuthal dependence for I then

𝐹𝜆 = ර 𝐼𝜆 cos 𝜃 𝑑𝜔 = න

0

2𝜋

dφ න

0

𝜋

𝐼𝜆 cos 𝜃 sinθ dθ

In the plane-parallel or spherical case, we 
do not find any dependence of I on the 
longitude φ

𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔 = 2𝜋 න

0

𝜋

𝐼𝜆 cos 𝜃 sinθ dθ

𝐹𝜆 = −2𝜋 න

0

𝜋

𝐼𝜆 cos 𝜃 d (cos θ)

d = sinθ dθ dφ



Meaning of flux:
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𝐹 = −2𝜋 න

0

𝜋

𝐼𝜆 cos 𝜃 d (cos θ) = 2𝜋 න

−1

1

𝐼(𝜇) 𝜇 d𝜇

Radiation flux = netto energy going through area
Decomposition into two half-spaces:

= 2𝜋 න
0

1

𝐼(𝜇) 𝜇 d𝜇 + 2𝜋 න
−1

0

𝐼(𝜇) 𝜇 d𝜇

= 2𝜋 න
0

1

𝐼(𝜇) 𝜇 d𝜇 − 2𝜋 න
0

1

𝐼 −𝜇 𝜇 d𝜇 =  𝑭+ − 𝑭−

=cos 

Netto = Outwards - Inwards

Special cases: at the surface of a star F − = 0, so that F = F + 

          at the centre of a star, isotropic radiation field: F=0



Intensity, Flux, and Luminosity
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 I is independent of distance from the source and can only be 
measured directly if we resolve the radiating surface. 
In contrast, F obeys the inverse square law and is all that may 
be measured for most stars.

 Indeed, if we consider a star as the source of radiation, then 
the flux emitted by the star into a solid angle dω is dL=dωr2F, 
where F is the flux density observed at a distance r from the 
star. If the star radiates isotropically then radiation at a 
distance r will be distributed evenly on a spherical surface of 
area 4πr2 and hence we get the relationship:

L=4πr2F

 It is also usual to refer to the total flux from a star as the 
Luminosity, L.

dS ≡ r2 d



Surface brightness
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 Flux density arriving from a point source is inversely proportional to the 
distance. But what about an extended luminous object such as a nebula 
or galaxy? The situation is slightly more complicated. 

 The surface brightness is defined as the flux density per unit solid angle. 
The geometry of the situation results in the interesting fact that the 
observed surface brightness is independent of the distance of the 
observer from the extended source. 

 This slightly counter-intuitive phenomenon 
can be understood by realizing that although 
the flux density arriving from a unit area is 
inversely proportional to the square of the 
distance to the observer, the area on the 
surface of the source enclosed by a unit solid 
angle at the observer is directly proportional 
to the square of the distance. 

 Thus, the two effects cancel each other out.

dS ≡ r2 d



Mean Intensity, Flux and K-integral
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 The mean intensity J is the directional average of the specific intensity 
(over 4 steradians):

 Flux F, is the projection of the specific intensity in the radial direction 
(integrated over all solid angles):

 There is also a K-integral which we will use later:

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔

𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔

𝐾𝜆 =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔



K-integral and radiation pressure
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 K-integral is related to the radiation pressure:

 A photon has momentum      𝑝𝜆 = 𝐸𝜆/𝑐

 Consider photons transferring momentum to a solid wall. 
Force:

 Pressure:

𝐾𝜆 =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔

𝑑𝑃𝜆 =
𝐹

𝑑𝜎
=

1

𝑐

𝑑𝐸𝜆 cos 𝜗

𝑑𝑡 𝑑𝜎
=

1

𝑐
𝐼𝜆 cos2 𝜗 𝑑𝜔 𝑑𝜆

𝐼𝜆 =
𝑑𝐸𝜆

cos 𝜃𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡
 

𝑃𝑟𝑎𝑑(𝜆) =
1

𝑐
ර

4𝜋

𝐼𝜆 cos2 𝜗 𝑑𝜔 =
4𝜋

𝑐
𝐾𝜆

𝐹 =
𝑑𝑝𝜆⊥

𝑑𝑡
=

1

𝑐

𝑑𝐸𝜆

𝑑𝑡
cos 𝜗



Plane-parallel vs spherical geometry
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 Parallel-ray RTE is a very simple 
approach.

 In principal, we need to consider 
spherical geometry when 
calculating the transfer equation 
in stars.

 Fortunately, the geometrical 
thickness of most stellar 
photospheres is small compared 
to their radii, permitting the 
plane-parallel approximation, 
r → ∞

𝑑𝐼𝜆

𝑑𝑠
= − cos 𝜗

𝜕𝐼𝜆

𝜕𝑟

angle 𝜗 between ray and radial direction 
is not constant



The plane-parallel transfer equation 
(for stars with thin photospheres) 

is identical to the parallel-ray transfer equation 
(for ISM studies), 

except for 

1. the cos() term, because the optical depth 
is measured along the radial direction x 
and not along the line of sight, i.e 
d=-  dx  

2. sign change, since we are now looking 
from the outside in, along direction x.

The full spherical geometry transfer equation is 
necessary for supergiants.
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𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

𝑑𝐼𝜆

𝑑𝜏𝜆
= −𝐼𝜆 + 𝑆𝜆

Transfer Equation for Stars
167



 We will try to solve the plane-parallel RTE  later 
when we start discussing stellar photospheres.

 But now let’s concentrate on stellar interiors.

 The plane-parallel RTE  leads to two particularly useful relations between the 
various quantities describing the radiation field. 

 First, recall that S depends only on the local conditions of the gas, independent of 
direction. Then, integrating over all solid angles, we get

𝑑

𝑑𝜏𝜆
ර𝐼𝜆 cos 𝜃 𝑑𝜔 = ර𝐼𝜆𝑑𝜔 − 𝑆 ර𝑑𝜔

𝑑𝐹𝜆

𝑑𝜏𝜆
= 4𝜋( 𝐽𝜆 − 𝑆 )
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𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

The plane-parallel RTE
168



 The second relation: multiply the plane-parallel 
RTE by cos() and again integrate over all solid 
angles: 

𝑑

𝑑𝜏𝜆
ර𝐼𝜆 cos2 𝜃 𝑑𝜔 = ර𝐼𝜆 cos 𝜃 𝑑𝜔 − 𝑆𝜆 රcos 𝜃 𝑑𝜔

𝑑𝑃𝑟𝑎𝑑,𝜆

𝑑𝜏𝜆
=

1

𝑐
𝐹𝜆

𝑑𝑃𝑟𝑎𝑑,𝜆

𝑑𝑟
= −

𝜅𝜆𝜌

𝑐
𝐹𝜆

 Integrating the radiation pressure and flux over wavelengths, and replacing 
𝜅𝜆by a weighted mean of opacity 𝜅𝑅 − the Rosseland mean opacity 
[we will introduce it later]: 

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹
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𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

Radiative diffusion (1)
169

𝑃𝑟𝑎𝑑,𝜆 =
1

𝑐
ර

4𝜋

𝐼𝜆 cos2 𝜗 𝑑𝜔 ර cos 𝜃 𝑑𝜔 = න

0

2𝜋

dφ න

0

𝜋

cos 𝜃 sinθ dθ=0

d=-  dx

d = sinθ dθ dφ



𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹

 This relation can be interpreted as that the net radiative flux is driven by 
differences in the radiation pressure, with a “photon wind” blowing from high to 
low Prad. 

 Thus, the transfer of energy by radiation is a process involving the slow upward 
diffusion of randomly walking photons, drifting toward the surface in response to 
tiniest differences in the radiation pressure.

 As we see, the description of a “ray” of light is in fact only a convenient fiction, 
used to define the direction of motion instantly shared by the photons that are 
continually absorbed and scattered into and out of the beam. 
 It can be shown that a photon generated near the centre of the Sun will be absorbed and re-emitted 

~1022 times before it escapes at the surface and the time it takes to do this is approximately equal to 
the thermal timescale of the Sun (a few × 107 years). This means that when we observe energy 
radiated at the solar surface, we are usually seeing the results of nuclear reactions which occurred tens 
of millions of years ago.

170

Radiative diffusion (2)
170



 The radiation pressure gradient:

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜅𝑅𝜌

𝑐
𝐹 =

4

3
𝑎𝑇3

𝑑𝑇

𝑑𝑟
 Then

𝑑𝑇

𝑑𝑟
= −

3

4𝑎𝑐

𝜅𝑅𝜌

𝑇3 𝐹

 Let’s write Flux in terms of the local radiative luminosity of the star at radius r:

𝐹(𝑟) =
𝐿(𝑟)

4𝜋𝑟2

 The temperature gradient for radiative transport becomes:

𝑑𝑇

𝑑𝑟
= −

3

4𝑎𝑐

𝜅𝑅𝜌

𝑇3

𝐿 𝑟

4𝜋𝑟2
= −

3

64𝜋𝜎𝑆𝐵𝑟2

𝜅𝑅𝜌

𝑇3
𝐿(𝑟)
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Recall: the pressure exerted by photons 
on the particles in a gas is: 

𝑃𝑟𝑎𝑑 =
𝑎𝑇4

3

where radiation density constant

𝑎 =
4𝜎𝑆𝐵

𝑐

The Radiative Temperature Gradient
171

The fourth 
equation of 
stellar structure. 



Summary of the lectures on RT
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 In addition to the specific intensity 𝐼𝜆, emission (𝑗𝜆 and 𝜀𝜆) and absorption coefficients 
(𝜅𝜆 and 𝛼𝜆), optical depth 𝑑𝜏𝜆, the source function 𝑆𝜆, we defined the mean intensity 𝐽𝜆 
and the energy density, radiative flux 𝐹𝜆 and luminosity L, K-integral and the radiation 
pressure 𝐹𝑟𝑎𝑑.

 We derived the plane-parallel equation of radiative transfer (RTE):

cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆

 We have also derived the fourth differential equation of stellar structure 
(the temperature gradient for radiative transport ):

𝑑𝑇

𝑑𝑟
= −

3

64𝜋𝜎𝑆𝐵𝑟2

𝜅𝑅𝜌

𝑇3
𝐿(𝑟)

 Now we have all four equations, which govern the structure of stars. 
Let’s now start searching for possible ways to solve them.



T H E  E Q U A T I O N S  O F  S T E L L A R  S T R U C T U R E  A N D  
P O S S I B L E  W A Y S  T O  S O L V E  T H E M .

B O U N D A R Y  C O N D I T I O N S .

C O N V E C T I O N  A N D  C O N D I T I O N S  F O R  I T S  O C C U R R E N C E
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The equations of stellar structure



Solving the equations of stellar structure
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
𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟


𝑑𝑃(𝑟)

𝑑𝑟
= −

𝐺𝑚 

𝑟2 𝜌 𝑟


𝑑𝐿 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟 ε 𝑟


𝑑𝑇(𝑟)

𝑑𝑟
= −

3

64𝜋𝜎𝑟2

𝜌(𝑟)𝜅𝑅(𝑟)

𝑇3(𝑟)
𝐿(𝑟)

We will consider the quantities:

 P = P( ρ, T, chemical composition)

 κR = κR ( ρ, T, chemical composition)

 ε = ε ( ρ, T, chemical composition)

Where

 r = radius

 P = pressure at r

 m = mass of material within r

 ρ = density at r

 L = luminosity at r (rate of energy flow across 
sphere of radius r)

 T = temperature at r

 κR = Rosseland mean opacity at r

 ε = energy release per unit mass per unit time

Now we have all four differential equations, which govern the structure of stars
(Note! in the absence of convection)

The equation of state



Boundary conditions
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 Two of the boundary conditions are fairly obvious, 
at r=0, the centre of the star, m=0, L=0.

 At the surface of the star its not so clear, but we use approximations to allow 
solution. 

 There is no sharp edge to the star, but for the Sun ρ(surface)~10-7 g cm-3. It is much 
smaller than mean density ҧ𝜌~1.4 g cm-3.

 We also know the surface temperature (Teff=5780K) is much smaller than its minimum 
mean temperature (2x106 K).

 Thus, we make two approximations for the surface boundary conditions: ρ=0, T=0 
at r=R, i.e. that the star does have a sharp boundary with the surrounding vacuum.



Use of mass as the independent variable
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
𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟


𝑑𝑃(𝑟)

𝑑𝑟
= −

𝐺𝑚 

𝑟2 𝜌 𝑟


𝑑𝐿 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟 ε 𝑟


𝑑𝑇(𝑟)

𝑑𝑟
= −

3

64𝜋𝜎𝑆𝐵𝑟2

𝜌(𝑟)𝜅𝑅(𝑟)

𝑇3(𝑟)
𝐿(𝑟)


𝑑𝑟

𝑑𝑚
=

1

4𝜋𝑟2𝜌


𝑑𝑃

𝑑𝑚
= −

𝐺𝑚 

4𝜋𝑟4


𝑑𝐿

𝑑𝑚
= ε


𝑑𝑇

𝑑𝑚
= −

3𝜅𝑅𝐿

256×𝜋2𝜎𝑆𝐵𝑟4𝑇3

The above formulae would (in principle) allow theoretical models of stars with a given radius. However, 
from a theoretical point of view it is the mass of the star which is chosen, the stellar structure equations 
solved, then the radius (and other parameters) are determined. We observe stellar radii to change by orders 
of magnitude during stellar evolution, whereas mass appears to remain constant. Hence it is much more 
useful to rewrite the equations in terms of m rather than r. 
We did it before: divide the equations by the equation of mass conservation:

We specify m and the chemical composition and now have a well-defined set of 
relations to solve. It is possible to do this analytically if simplifying assumptions 
are made, but in general these need to be solved numerically on a computer. 



Stellar evolution (1)
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 We have a set of equations that will allow the complete structure of a star to be 
determined, given a specified mass and chemical composition. 
However, what do these equations not provide us with?

 In deriving the equation for hydrostatic support, we have seen that provided the 
evolution of star is occurring slowly compared to the dynamical time td, we can 
ignore temporal changes (e.g. pulsations). Indeed, for the Sun td~30 min, hence 
this is certainly true.

 And we have also assumed that time dependence can be omitted from the 
equation of energy generation, if the nuclear timescale (the time for which nuclear 
reactions can supply the stars energy) is greatly in excess of tth.



Stellar evolution (2)
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 If there are no bulk motions in the interior of the star, then any changes of chemical 
composition are localized in the element of material in which the nuclear reactions 
occurred. So, the star would have a chemical composition which is a function of mass 
m(r).

 In the case of no bulk motions – the set of equations we derived must be supplemented 
by equations describing the rate of change of abundances of the different chemical 
elements. Let CX,Y,Z be the chemical composition of stellar material in terms of mass 
fractions of hydrogen (X), helium (Y), and metals (Z) 
[e.g., for the Solar system X=0.7, Y=0.28, Z=0.02].

𝜕(𝐶𝑋,𝑌,𝑍)𝑚

𝜕𝑡
= 𝑓(𝜌, 𝑇, 𝐶𝑋,𝑌,𝑍)

 Now let’s consider how we could evolve a model

(𝐶𝑋,𝑌,𝑍)𝑚,𝑡0+𝛿𝑡 = (𝐶𝑋,𝑌,𝑍)𝑚,𝑡0
+

𝜕(𝐶𝑋,𝑌,𝑍)𝑚

𝜕𝑡

However …
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