Specific and mean Intensity

I, = Ea
A7 cosO dAldo dw dt

From the previous lecture:

Let's try in another way:
» The (specific) intensity I, is a measure of brightness:

- dE;
"~ cosf dldo dw dt

dA, do, dw,dt 2 0 dE diminishes to zero as well

I

» In this way, we define the specific intensity at a “point” on the surface, at a given time, in
a direction 0, at a wavelength A - brightness.

The mean intensity J, is the directional average of the specific intensity
(over 47 steradians):
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Integrated over the whole unit sphere
centered on the point of interest.




Mean intensity and Energy density

IAdw da)

Ja= 47‘[

» The mean intensity J, is related to the energy density u, :
* Energy radiated through area element do during time dt:

dE, = I, dA do dw dt dV
[=cdt mm) dV=Ido=cdtdo !

» Hence, the energy contained in volume element dV per
wavelength interval is:
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Flux (1)

» From an observational point of view, we are generally more interested in the energy
flux or flux ( L,, L ) and the flux density ( I, I).
Flux density gives the power of the radsilation per unit area and hence has
dimensions of erg s cm2 A1 (or erg s em= Hz™).
Observed flux densities are usually extremely small and therefore (especially in
radio astronomy) flux densities are often expressed in units of the Jansky (Jy),
where 1 Jy=10"23 erg s cm™ Hz .

* You should be aware - and beware - that different authors define the terms flux
density, flux and intensity differently, and they are sometimes used
interchangeably!

» We will often call flux density as just flux.

e Standard definition:
Flux describes any effect that appears to pass or travel through a surface or
substance. In transport phenomena (radiative transfer, heat transfer, mass transfer,
fluid dynamics), flux is defined as the rate of flow of a property per unit area, which
has the dimensions [quantity|x[time]~* x[area]".
o For example, the magnitude of a river's current, i.e. the amount of water that flows
through a cross-section of the river each second is a kind of flux.




Flux (2)

In radiative transfer, flux is related to the intensity
(“specific” is often omitted):

 Flux F) is a measure of the net energy flow across an area do, over a
time dt, in a dA. The only directional significance is whether the energy
crosses do from the top or from the bottom. Then we can write:

dE
The solid angle dw appears - 1= Sﬁ A Integrated over all directions.
for I, but not for F, dAdo dt
/ \ substitute
er ~ cos 8dA da dw dt
F;L—yél,lcosé?dw gz
‘ A cm The amount of energy going through 1 cm?

‘ per second per 1A into the solid angle dw
in the direction inclined by the angle 0 to
the normal of the area.

Thus, flux F, is the projection of the specific intensity I,
in the radial direction (integrated over all solid angles)




Flux (3)

Expressing dw by means of 6 and ¢,

dw = sinf dO d¢

27T T

F;L=f1,1cost9da) =f d(pJIACOSHSiDQdQ
0

0

If there is no azimuthal dependence for I, then
T

F; él,l cosfdw = an I; cos 6 sinf db

0 In the plane-parallel or spherical case, we
do not find any dependence of I, on the
longitude ¢

T
F, = —an I, cos 68 d(cosB)
0




Meaning of flux:

Radiation flux = netto energy going through area
Decomposition into two half-spaces:

1
= —an I, cosOd(cos0) =2m f](,u)ud,u u=cos 6
0 -1
-1 -0
=2m | I pdu+2r | I(w)pdu
Jo J_1
r ' P
=27TJ I(H)#dﬂ—ZﬂJ [(=pudp= F"—F
0 0

Netto = Outwards - Inwards

Special cases: at the surface of a star /'~ = 0, so that /= F*
at the centre of a star; isotropic radiation field: /=0




e Iis independent of distance from the source and can only be
measured directly if we resolve the radiating surface.
In contrast, F obeys the inverse square law and is all that may
be measured for most stars. dS = 2 deo

» Indeed, if we consider a star as the source of radiation, then
the flux emitted by the star into a solid angle dw is dL=dwr?F,
where I is the flux density observed at a distance r from the
star. If the star radiates isotropically then radiation at a
distance r will be distributed evenly on a spherical surface of
area 47> and hence we get the relationship:

L=g4nr2F

e It is also usual to refer to the total flux from a star as the
Luminosity, L.



Surface brightness

» Flux density arriving from a point source is inversely proportional to the
distance. But what about an extended luminous object such as a nebula
or galaxy? The situation is slightly more complicated.

e The surface brightness is defined as the flux density per unit solid angle.
The geometry of the situation results in the interesting fact that the
observed surface brightness is independent of the distance of the
observer from the extended source.

 This slightly counter-intuitive phenomenon dS = 2 do
can be understood by realizing that although .
the flux density arriving from a unit area is
inversely proportional to the square of the
distance to the observer, the area on the
surface of the source enclosed by a unit solid
angle at the observer is directly proportional
to the square of the distance.

» Thus, the two effects cancel each other out.




Mean Intensity, Flux and K-integral

e The mean intensity J, is the directional average of the specific intensity
(over 4r steradians):
Ja =

Id
417)‘(‘)

 Flux F, is the projection of the specific intensity in the radial direction
(integrated over all solid angles):

F), = 7€I;L cos 0 dw
» There is also a K-integral which we will use later:

Ky = — 3@1 20d
/1—47_[ 2 COS w




K-integral and radiation pressure

K-integral is related to the radiation pressure: K, = ppe é I, cos? 0 dw
T

A photon has momentum p, = E;/c

Consider photons transferring momentum to a solid wall.
Force:

dp/‘u_ 1dE/‘{
F = =
at ¢ de oY
F 1dEjcosv 1 5
e Pressure: dP,1=%=E It do =EI,1cos Y dw dA

I . dE/l
A~ cosBdAdo dw dt
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41




Plane-parallel vs spherical geometry

e Parallel-ray RTE is a very simple |
approach. e

e In principal, we need to consider
spherical geometry when
calculating the transfer equation
in stars.

e Fortunately, the geometrical

thickness of most stellar & & F Ok
photospheres is small compared
to their radii, permitting the angle ¥ between ray and radial direction
plane-parallel approximation, is not constant
r—> o
dIA 01/1 dl, dl, dr dl, dé
= —coSsVY— & ds 90 &

ds or dr g 40 s
d.




Transfer Equation for Stars

The plane-parallel transfer equation

(for stars with thin photospheres) ' cos 0 A—(e) =1,(0)—S5;1

is identical to the parallel-ray transfer equation
(for ISM studies), d,

except for dt

1. the cos(0) term, because the optical depth &
is measured along the radial direction x
and not along the line of sight, i.e /

dt,=-K; pdx 0 )
) ax ds

2. sign change, since we are now looking ,
from the outside in, along direction x. X+ ax

to center
The full spherical geometry transfer equation is of star
necessary for supergiants. ¢




The plane-parallel RTE

— e e o o — — — .
We will try to solve the plane-parallel RTE later ! dl,(0) I
. . | cos@ =1,(0)-35;
when we start discussing stellar photospheres. dt; I
But now let’s concentrate on stellar interiors. @ = = = = = = = = = = — — ]

The plane-parallel RTE leads to two particularly useful relations between the
various quantities describing the radiation field.

First, recall that S depends only on the local conditions of the gas, independent of
direction. Then, integrating over all solid angles, we get

d
d_T/l IA cosfdw = f]ada) —S%da)




Radiative diffusion (1)

U 1
e The second relation: multiply the plane-parallel | 0 dl,(0) — 1.(0) —S I
RTE by cos(6) and again integrate over all solid | €OS dt; = 1,(0) 4
angles: L e e e e e e - - ]
d
d_r,—ljgl’l cos?Odw = 741,1 cosOdw — S jgcose dw
do = sinf d0 de
dP d,A 1 2m 7T
Praaa =% jglg cos? 9 dw dr,; — EF/'l jgcosedw =f d(pf cos 0 sinf dO=0
dP K
dt,=-k; pdx rad,A - L’D F
dr c *

* Integrating the radiation pressure and flux over wavelengths, and replacing
K, by a weighted mean of opacity k; — the Rosseland mean opacity
[we will introduce it later]:
dprad . PKR

=——F
dr C




Radiative diffusion (2)

APrag _ _PKR
dr C

» This relation can be interpreted as that the net radiative flux is driven by
differences in the radiation pressure, with a “photon wind” blowing from high to
low P__.

* Thus, the transfer of energy by radiation is a process involving the slow upward
diffusion of randomly walking photons, drifting toward the surface in response to
tiniest differences in the radiation pressure.

» As we see, the description of a “ray” of light is in fact only a convenient fiction,
used to define the direction of motion instantly shared by the photons that are
continually absorbed and scattered into and out of the beam.

O It can be shown that a photon generated near the centre of the Sun will be absorbed and re-emitted
~107? times before it escapes at the surface and the time it takes to do this is approximately equal to
the thermal timescale of the Sun (a few x 107 years). This means that when we observe energy
radiated at the solar surface, we are usually seeing the results of nuclear reactions which occurred tens
of millions of years ago.




The Radiative Temperature Gradient

Recall: the pressure exerted by photons

e The radiation pressure gradient: e e e e ke
Praa = ——
3
dP rad Krp 4 T3 dr where radiation density constant
= —_——— = — a —_— 4'0'53
dr c 3 dr “=
* Then
dT 3 Kgp
dr 4ac T3

Let’s write Flux in terms of the local radiative luminosity of the star at radius r:

_ L

The temperature gradient for radiative transport becomes:

The fourth
dr _ 3 xep L(r) _ : KRpL(r) equation of

. = 3 2 = 2 T3
dr 4ac T3 4nr 64rosgrs T stellar structure.




Summary of the lectures on RT

» In addition to the specific intensity /;, emission (j; and ¢;) and absorption coefficients
(x; and ), optical depth dt,, the source function S;, we defined the mean intensity /;
and the energy density, radiative flux F; and luminosity L, K-integral and the radiation
pressure F, ;.

e We derived the plane-parallel equation of radiative transfer (RTE):

dl;(0)
d'l’)L

cos O =1(0) — S,

* We have also derived the fourth differential equation of stellar structure
(the temperature gradient for radiative transport ):

ar 3 Krp
dr  64moger? T3

L(r)

* Now we have all four equations, which govern the structure of stars.
Let’s now start searching for possible ways to solve them.




The equations of stellar structure

THE EQUATIONS OF STELLAR STRUCTURE AND
POSSIBLE WAYS TO SOLVE THEM.

BOUNDARY CONDITIONS.

CONVECTION AND CONDITIONS FOR ITS OCCURRENCE




Solving the equations of stellar structure

Now we have all four differential equations, which govern the structure of stars
(Note! in the absence of convection)

dm Where

e ar = 477,'7”2,0 (7") o r=radius
e P=pressureatr
o 4 (7‘) p (r) e m = mass of material within r
dr 7‘2 o p=densityatr
¢ L =luminosity at r (rate of energy flow across
° dL(r) — 471'r2 P (‘r‘)g(r) sphere of radtiills r) ( =
ar e T =temperature atr
ar(r) _ 3 p(rkgr(T) I (7‘) * kg = Rosseland mean opacity at r
dr 64mor?  T3(r) e ¢ = energy release per unit mass per unit time

We will consider the quantities:

e P=P(p, T, chemical composition) —— The equation of state
* kg =Ky (p, T, chemical composition)
» e=¢(p, T, chemical composition)




Boundary conditions

e Two of the boundary conditions are fairly obvious,
at r=0, the centre of the star, m=0, L=0.

» At the surface of the star its not so clear, but we use approximations to allow
solution.

o There is no sharp edge to the star, but for the Sun p(surface)~10-7 g cm3. It is much
smaller than mean density p~1.4 g cm3,

o0 We also know the surface temperature (T,;=5780K) is much smaller than its minimum
mean temperature (2x10° K).

e Thus, we make two approximations for the surface boundary conditions: p=0, T=0
at r=R, i.e. that the star does have a sharp boundary with the surrounding vacuum.




Use of mass as the independent variable

The above formulae would (in principle) allow theoretical models of stars with a given radius. However,
from a theoretical point of view it is the mass of the star which is chosen, the stellar structure equations
solved, then the radius (and other parameters) are determined. We observe stellar radii to change by orders
of magnitude during stellar evolution, whereas mass appears to remain constant. Hence it is much more
useful to rewrite the equations in terms of m rather than r.

We did it before: divide the equations by the equation of mass conservation:

dm dr 1
o — =4mr4p(r) o —=
dr dm  4nr?p
dP(r Gm dp G
L BP0 Gm . _  Gm
dr r2 dm 4mrd
o LM _ 4rtr? p(r)e(r) o XL _¢
ar dm
dT(r 3 T)KR(Tr ar 3KRL
AT _ PUR(T) | Loar _ 2
dr 64mosgr? T3(r) dm 256Xm%0ggT4T3

We specify m and the chemical composition and now have a well-defined set of
relations to solve. It is possible to do this analytically if simplifying assumptions
are made, but in general these need to be solved numerically on a computer.




Stellar evolution (1)

* We have a set of equations that will allow the complete structure of a star to be
determined, given a specified mass and chemical composition.
However, what do these equations not provide us with?

e In deriving the equation for hydrostatic support, we have seen that provided the
evolution of star is occurring slowly compared to the dynamical time ¢, we can
ignore temporal changes (e.g. pulsations). Indeed, for the Sun ¢;,~30 min, hence
this is certainly true.

* And we have also assumed that time dependence can be omitted from the
equation of energy generation, if the nuclear timescale (the time for which nuclear
reactions can supply the stars energy) is greatly in excess of t,,.




Stellar evolution (2)

e If there are no bulk motions in the interior of the star, then any changes of chemical
composition are localized in the element of material in which the nuclear reactions
occurred. So, the star would have a chemical composition which is a function of mass
m(r).

e In the case of no bulk motions - the set of equations we derived must be supplemented
by equations describing the rate of change of abundances of the different chemical
elements. Let Cy y, be the chemical composition of stellar material in terms of mass
fractions of hydrogen (X), helium (Y), and metals (Z)

[e.g., for the Solar system X=0.7, Y=0.28, Z=0.02].

a(C
( Xa,i,z)m =f(p,T,Cxyz)

e Now let’s consider how we could evolve a model

d(Cxy,z)
(Cxy,z2)mio+6t = (Cxy,z)mie, T+ T =

However ...




Solar surface

Granule size ~1000 km
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Solar surface
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