Recap

We obtained TWO of four basic equations to describe stellar structure:

1. Equation of hydrostatic equilibrium: at each radius, forces due to
pressure differences balance gravity

dP(r) Gm
dr - r2 p(r)
2. Conservation of mass
dM )
o= Artrep(r)

We also found that basic assumptions on spherical symmetry and that the
gravity and pressure forces are well balanced are very solid.




The Virial theorem (1)

Let’s again take the hydrostatic equilibrium equation, in which enclosed mass m is
used as the dependent variable (or combine the equation of hydrostatic equilibrium
with the equation of mass conservation):

dP(T') _ Gm P dP(r) 9 dr _Gm 1

am —4 4 dr dm 12 px4nr2p
T \ dmM
Now multiply both sides by volume V=(4/3)mr3: r? o(r)
Gm

3V(r)dP = — " dm
And integrate over the whole star:

Pg M

3 J V(r)dP = —f ——dm
P, 0
integrating by parts
Vs M
Gm
3[PV]§ -3 j PdV = —j Tdm
Ve 0

At centre, V=0 and at surface P =0




The Virial theorem (2)

Hence, we have
1

d

0

M

Gm

PdV=j " dm = —E;
0

Now the right-hand term = — total gravitational binding energy of the star,
or it is the energy needed to spread the star to infinity,
or to assemble the star by bringing gas from infinity.

v
version of the
e o o
virial theorem
0

The left-hand side contains pressure integral. With some assumptions about the
pressure, we can progress further.




The Virial theorem (3)

Forideal gas, P = NkT,

where /V is concentration, 7 is the temperature, & is Boltzmann's constant,

while the thermal (kinetic) energy per particle is e, = S NkT

2
Thus, the LHS is
14 14

3 j PdV =2 J exindV = 2E;
0 0
where £ is the thermal energy of the star.
Thus, we can write the Virial Theorem: 2F T + F c= 0
or for the total energy £'= £,+ E.: E= —ET

This is of great importance in astrophysics and has many applications.




Timescales of stellar evolution (1)

1. Dynamical time scale

Measure of the time scale on which a star would expand or contract if the balance
between pressure gradients and gravity was suddenly disrupted (same as free-fall
time scale).

Previously we obtained a generalized form of the equation of hydrostatic support,
and then assuming a non-zero inward acceleration to be a = g, we obtained the

spatial displacement d after a time ¢: d = % Lgt? dp(r)

= ()
by

Now, if we allow the star to collapse, i.e. set /=1 and d=R and substitute g=GM/r?

2R3 1/2
fan =\ oM

t 4yn is known as the dynamical time.

+ gp(r) = ap(r)




The dynamical timescale (1)

We can get a better estimation if assume that the whole mass is concentrated in
the centre. The equation of motion is

At home you will show that the time for collapse from radius 7 to 0 is

- R3 1/2
tayn =
22 \GM

One can express that through mean density as:

31T 1/2 1
tdyn = 3—2 Tp—




The dynamical timescale (2)

For different radii, we get

. _m <r3>1/2_<37r>1/2 1
dyn = 5 2 \Gm 32 Go,

where m =m(r) is the mass interior to 7; p,- is the mean density in sphere of radius r.

We see that if density decreases with radius,

then p, also decreases and time-scale grows.
Thus, shell at larger radii falls down longer.
This also confirmed our assumption of the whole mass concentrated inside.

For the Sun R;=6.96x10'% cm, M, =1.99x103% g: ¢, = 1770 sec =~ 0.5 hour
p =14gcm3




Timescales of stellar evolution (2)

2. Thermal time scale (Kelvin-Helmholtz time scale)
Suppose nuclear reaction were suddenly cut off in the Sun.

Thermal time scale is the time required for the Sun to radiate all its reservoir of
thermal energy:

Er  GM?

L \_ 2RL
Virial theorem: the thermal energy E

is roughly equal to half the gravitational
potential energy

1.5 X 107 yr (for the Sun)

tk

Important timescale: determines how quickly a star contracts before nuclear fusion
starts - i.e. sets roughly the pre-main sequence lifetime.




Timescales of stellar evolution (3)

3. Nuclear time scale

Time scale on which the star will exhaust its supply of nuclear fuel if it keeps burning
it at the current rate.

Energy release from fusing one gram of hydrogen to helium is ~6 x 1018 erg, so:

qXM X 6 X 1018 4
tn = I ergg

where

» Xis the mass fraction of hydrogen initially present (X=0.7)
e qis the fraction of fuel available to burn in the core (q=0.1)

t, ~ 7 X 10° yr (for the Sun)

Reasonable estimate of the main-sequence lifetime of the Sun.




Stellar timescales

tayn K tg K ty

Ordering time scales:

For the Sun: t 4yn=30 min
t« =15 million years
t, = 7 billion years

Most stars, most of the time, are in hydrostatic and thermal equilibrium, with slow
changes in structure and composition occurring on the (long) time scale 7 as fusion
occurs.

Do observe evolution on the shorter time scales also:
* Dynamical - stellar collapse / supernova
e Thermal / Kelvin-Helmholtz - pre-main-sequence




Conditions in stellar interiors

MINIMUM VALUE FOR CENTRAL PRESSURE OF A STAR
MINIMUM MEAN TEMPERATURE OF A STAR
STATE OF STELLAR MATERIAL




Let us consider several applications of our current knowledge.
We will derive mathematical formulae for the following

1. Minimum value for central pressure of a star
o. Minimum mean temperature of a star
5. State of stellar material

In doing this you will learn important assumptions and
approximations that allow the values for minimum central
pressure, mean temperature and the physical state of stellar
material to be derived.



Minimum value for central pressure of star (1)

We have only 2 of the 4 equations, and no knowledge yet of material composition or
physical state. But we can deduce a minimum central pressure.

Given what we know, what is this likely to depend upon?

Let’s again take the hydrostatic equilibrium equation, in which enclosed mass m is used as the
dependent variable (or combine the equation of hydrostatic equilibrium with the equation of
mass conservation):

dP(T‘) B Gm / dP(T)X dr __Gm 1

— = X
dr — dm rz P 4mtr2p

dm 4rrr# —

M
Can integrate this over the whole star to give: o = 4mr?e()
M
Gm(r)
Po—F=F = = dm(r) The integration requires
0 \ functional forms of m(r).

Unfortunately, such explicit

_ expression is not available.
However, replacing » by

M
the stellar radius R > r, Gm G M? GM 2
we obtain a lower limit P 2 j AT R4 dm = 3 R4 P >
for the central pressure: 0 C — 87-[ R 4




Minimum value for central pressure of star (2)

We can improve the lower limit making a natural assumption that density does not
increase towards the surface.

Define the average density within sphere of radius » as p, = m/ (M 3)

MGm(r) 1 /4m\*/3 r
_ _ 4/3
pc_j - dm(r)—§<3> Gjpr 13m=1/3 dm
0 0

For density not increasing outwards pr = p =pr, weget

1/3
1/4n m\1/3
PC §< : ) p—4/3Gj m—1/3 dm = (g) Gp—4/3M2/3

\Y

b= 3 GM?
©~ 8w R*
-




Maximum value for central pressure of star

An upper limit on central pressure can be obtained just assuming p. = p

which is e.g., valid when density is largest in the centre:

13 M 1/3
1/4m o 1/4m 43 B
Pc=§<?) Gfpr4/3 ~1/3 de§<?> / fm /3 dm
0

We can write it as

b < 3 GM?
©~ 8m R}

where R_is the radius of the star with mass M and density p_defined by RC pc =M

Thus, we get

T

1/3 m\1/3
(g) GM2/354/3 < p. < (g) GM2/3p§/3

which is valid for p, = p, = p




Central pressure in stars

b 3 GM?
©=8r R4
M? (M/M®)2 dyn (M/M®)2
pP.>— = 1.35 x 10%° = 1.33 x 10° t
¢ =81 R (R/R.)* cm? (R/R)* °1

1 dyn=1 g-cm/s? 1 dyn/cm? = 0.1 Pa = 9.8692x107 atm

For stars at main sequence (MS): R « M#, where = (0.5+1)
o forlow-mass stars: f~1
o for masses above solar: f=2/3
o for very high masses: f#~0.5

P.>1.3x10°(M/M.)**F atm
P_strongly depends on the stellar structure and in reality, always much larger than simple
estimates above. The central pressure in MS stars is about 10'°+10'" atm.
This seems rather large for gaseous material — we shall see that this is not an ordinary gas. This
is huge pressure by Earth standards where experiments have reached only about 10¢ atm. But

even those pressures are small compared to that inside white dwarfs (10'? atm), or neutron
stars (102°+-1030 atm).

Calculate for the Sun




Minimum mean temperature of a star (1)

We have seen that pressure, P, is an important term in the equation of hydrostatic
equilibrium and the virial theorem. We have derived a minimum value for the
central pressure (P,>10° atmospheres).

What physical processes give rise to this pressure — which are the most
important?
* Gas pressure P,

» Radiation pressure P,,4

»  We shall show that P, is negligible in majority of stellar interiors and pressure is
dominated by P,

To do this we first need to estimate the minimum mean temperature of a star.
Consider the gravitational binding energy:

M 2
£ Gm i GM
—te = - M =€7h™  where e; = dq
0 /
The dimensionless gravitational energy and q= m/M x=r/R




Minimum mean temperature of a star (2)

We can obtain a lower bound on e, by noting: at all points inside the star x<1 and hence
1 1

The dimensionless gravitational energy e, = j g dq > f q dq =1 / 2
X
0 0
For a constant density sphere one can get: g=m/M=(r/R)*=x® = es;=3/5
And for density decreasing outwards e; = 3/5 because one needs to move some mass

towards centre which releases gravitational energy. For the Sun e;=1.62. Now, dm=pdV and
the virial theorem can be written

V MP
0 0

Pressure is sum of radiation pressure and gas pressure: /= 7, + 7,
Assume, for now, that stars are composed of ideal gas with negligible 7.

Then, the equation of state of ideal gas:

P = NkT = —P— kT

Hmy
where / is concentration (number of particles per cm?3), 7 is the temperature, kis Boltzmann's constant,
¢ = mean molecular weight, i.e. the average mass of particles in unit of proton mass /,.




Minimum mean temperature of a star (3)

Hence, we have

M M
5o j P p ) j kT p GM*
—Lk; = —dm = —dam = e;
p pmy, R
0 0
Assuming chemically homogeneous star, p=const,
and defining the average over mass temperature
M
T ! j Td
= — m
M
0
we get the mean temperature of the star
T - e umy, GM
3 k R

This temperature is called virial temperature for obvious reason.
For density not increasing outwards, e; = 3/5, and therefore

1 M
T >t l
5 k R




Minimum mean temperature: Example

» As an example, for a chemically homogeneous star, we have

) M/M., _ M/M.
T =7.7x10° K kT = 660

eV

»  We know that H is the most abundant element in stars and for a fully ionized hydrogen star
u=1/2 (as there are two particles, p + e, for each H atom). And for any other element 1 is
greater => T,> 2.3x10° K.

» Also, the average kinetic energy of particles at T, is much higher than the ionization potential
of H (13.6 eV) or for double ionization of He (13.6x22=54 eV). Thus, the gas must be highly
ionized, i.e. is a plasma. As e, is actually larger than 1, temperatures in the stellar interiors are
(1+3)x107 K, which corresponds to the energies about 1-3 keV.

» Mean density of the Sun is higher than water and other ordinary liquids.
However, at such a temperature the gas is ionized. An ideal gas demands that the distances
between the particles are much greater than their sizes, and nuclear dimension is 103 cm
compared to atomic dimension of 108 em (which would be of interest in neutral gas). It can
thus withstand greater compression without deviating from an ideal gas.




Temperature in stellar interiors

» The dimensionless gravitational energy e, is not very sensitive to the stellar
structure and for MS stars it is about unity. The chemical composition is about the
same for all MS stars and T o ¥/,

o Because R < M¥ where f=(0.5+1)
the mean temperatures should decrease for smaller masses and change only by a
factor of a few between the lower and upper end of stellar masses.
However, variation in luminosities are much larger than variation in mass: 10°+10"
and 103 times, respectively. As temperature varies only very slightly, we have to
conclude that the energy production rate is a very strong function of temperature.
This conclusion is supported by studies of nuclear reactions.

» The masses of red giants (RG) are about solar, but luminosities are large, therefore
their temperatures should be at least as high as for the Sun. But their radii are 100 x
solar R. We are forces to conclude that e, >100, which can be achieved by strong
concentration of matter towards the centre. Thus, the RG structure should be very
much different from MS stars. A large fraction of RG mass should be contained in its
core (a white dwarf “under construction”).




Physical state of stellar material

Let us revisit the issue of radiation vs gas pressure. We assumed that the radiation pressure
was negligible. The pressure exerted by photons on the particles in a gas is:

aT?

P —
rad 3

40sp

where a = = 7.56 X 1071 erg cm™ K+ = radiation density constant

c
Now compare gas and radiation pressure at a typical point in the Sun:

Praa aT“‘/kTp _ umpaT?
B, 3 /um,  3kp

Taking T~T = 2 X 106K, p~p = 14 gcm™3,and ump = 1.67 x 10724 g gives
Prad

=10"*
Fy

Hence radiation pressure appears to be negligible at a typical (average) point in the Sun.
In summary, with no knowledge of how energy is generated in stars we lll)ave been able to
derive a value for the Sun’s internal temperature and deduce that it is composed of a near
ideal gas plasma with negligible radiation pressure.




Mass dependency of radiation to gas pressure

However, we shall later see that P, ; becomes significant in higher mass stars.
To give a basic idea of this dependency: replace p in the ratio equation above:

Praa _ #mpaT®  pm,aT®  Ampmya RT®

B - 3M
oo P k() M
And from the virial theorem: T %
P

Pg
i.e. P, becomes more significant in higher mass stars.

This is one of the reasons why there are no stars of very high masses >100Mg




Summary

For our stars — which are isolated, static, and spherically symmetric —there are four basic equations to describe
structure. All physical quantities depend on the distance from the centre of the star alone:

1. Equation of hydrostatic equilibrium: at each radius, forces due to pressure differences balance gravity
2. Conservation of mass

3. Conservation of energy : at each radius, the change in the energy flux = local rate of energy release

4. Equation of energy transport : relation between the energy flux and the local gradient of temperature

These basic equations supplemented with
e Equation of state (pressure of a gas as a function of its density and temperature)
e Opacity (how opaque the gas is to the radiation field)

e Core nuclear energy generation rate
With only two of the four equations of stellar structure, we have derived important relations for P, and mean 7.

We have used the Virial theorem — this is an important formula and concept in this course and astrophysics in
general. You should be comfortable with the derivation and application of this theorem.

We were able to make interesting conclusions about the energy dissipation rate dependence on temperature,
structure of red giants, and the role of radiation pressure.
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