
Are all the stars the same? 
55

No!
 Luminosity

10-6 L
 < L < 106 L


: 

factor of 1012 in L

 Radius
10-5 R

 < R < 103 R


: 
factor of 108 in R

 Mass
10-2 M


< M < 102 M


: 

factor of 104 in M

 Temperature
103 K < Teff < 105 K: 
factor of 102 in Teff

(but note that in 
neutron stars Teff can 
be higher than 107 K)



Spectral Lines
56

 Spectral lines originate in a stellar atmosphere – a thin, 
tenuous transition zone between (invisible) stellar 
interior and (essentially vacuum) exterior.

 Stellar interiors are effectively invisible to external 
observers (apart for e.g. astroseismology) so all the 
information we receive from stars originates from their 
atmospheres. Understanding how radiation interacts 
with matter affecting the emergent line and continuous 
spectrum is a part of this course. We will discuss it later.



Morgan-Keenan (M-K) 
classification scheme orders 
stars via “OBAFGKM” spectral 
classes using ratios of spectral 
line strength. 

O-types have the highest Teff’s. 
OBA stars are “early-type” star, 
whilst cooler stars are “late-
type”.

Spectral classes are each 
subdivided into (up to) ten 
divisions – e.g. O2 .. O9, B0, B1 
.. B9, A0, A1 .. etc

Spectral Types
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Luminosity Class classification

 Luminosity class information is often added, based upon spectral line 
widths:                                                              

 Dwarfs have high pressures (large line widths) and supergiants have 
lower pressures (smaller line widths).
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Some properties of representative stars
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Hertzsprung-Russell (HR) diagram

Most of the stars 
lie on the Main 
Sequence, with 
increasing L as T 
increases A relatively cool 

star can be quite 
luminous if it has a 
large enough 
radius (10-100 
R


): Red Giants 
and Supergiants

A relatively hot star 
can have very low 
luminosity, if its 
radius is very small 
(0.01 R


):

White Dwarfs
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Physical classification of stars
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Brown dwarfs
62

 Definition
Brown dwarfs are objects having insufficient mass to 
sustain normal hydrogen burning

 Masses of the brown dwarfs are ranging 
from 13 to 70 MJup (0.01 to 0.07 M


)

 The brown dwarfs are cold (Teff < 1400 K) and dim objects, 
which can be detected by infrared observation

 There are many uncertainties both theoretical and 
observational concerning these objects



White dwarfs
63

 White dwarfs consist of degenerate matter and may 
be treated as graveyard for the stars with initial 
masses ≤ 8 M



 Typical values:

 R ~ 10-2 R


 ~ R⊕

 M ~ (0.3 ÷ 1) M


 L ~ (10-2 ÷ 10-3) L


 ρ ~ (105 ÷ 106) g/cm3

Limiting mass
(Chandrasekhar limit)

MWD < 1.4 M




Neutron stars
64

 Neutron stars consist of neutron “fluid” and 
originate from the evolution of massive stars with 
M > 8 M



 Typical values:

 R ~ 10-15 km

 M ~ (1 ÷ 2) M


 ρ ~ 1015 g/cm3

Limiting mass
(Oppenheimer-Volkoff limit)

MNS < (2÷3) M




Black holes
65

 Schwarzschild (gravitational) radius:    𝑟𝑔 =
2𝐺𝑀

𝑐2

 Values of Schwarzschild radius:
 for Earth is 0.9 cm
 for the Sun is 3 km

 Supermassive black holes (not stars) are found in the centres of 
many galaxies as well as in the centre of our own Galaxy, Milky 
Way.
Typical values:
 M ~ (106 ÷ 109) M



 R ~ (1011 ÷ 1014) cm ~ (0.01 ÷10) AU
So radii range approximately from R


 to the Saturn distance



Physics involved
66

 The subject of stellar interiors covers a very broad area of 
physics and is expanding even further into fields that were 
previously not considered as a part of the subject matter of 
stellar structure.

 Mechanics
 Thermodynamics
 Radiation theory
 Relativity
 Atomic physics
 Nuclear physics
 Hydrodynamics
 Solid state physics



Stellar timeline
67

Stars are like people in that they are born, grow up, mature, and die.



Standard Exotic
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Stellar formation

In a gaseous disc around a 
supermassive black holeIn interstellar gas clouds



Stellar collapse
69

 Evolution of massive stars, with 
M > 20 M


, ends up in huge 

eruption observed as supernova 
or hypernova.

 The core of the star collapses 
directly into a compact object and 
two extremely energetic jets of 
plasma are emitted from its 
rotational poles.

 In a supernova, the collapse 
results in a neutron star.

 In a hypernova, a black hole is 
formed, and a gamma-ray burst 
might be produced.



B A S I C  A S S U M P T I O N S  

M A S S  C O N S E R V A T I O N

H Y D R O S T A T I C  E Q U I L I B R I U M  

V I R I A L  T H E O R E M

S T E L L A R  T I M E - S C A L E S  

Equilibrium in stellar 
interiors
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Introduction and recap (1)
71

Definition of a star as an object:
 Bound by self-gravity
 Radiates energy that is primarily released by nuclear fusion 

reactions in the stellar interior
Other energy sources are dominant during star formation and
stellar death:
 Star formation - before the interior is hot enough for 

significant fusion, gravitational potential energy is radiated as 
the radius of the forming star contracts.
Protostellar or pre-main-sequence evolution.

 Stellar death - remnants of stars (white dwarfs and neutron 
stars) radiate stored thermal energy and slowly cool down. 
Sometimes refer to these objects as stars but more frequently 
as stellar remnants.



Introduction and recap (2)
72

With this definition:

 planets are not stars - no nuclear fusion.

 objects in which release of gravitational potential energy is always 
greater than fusion are not stars either – these are called brown 
dwarfs.

Distinction between brown dwarfs and planets is less clear, most people 
reserve “planet” to mean very low mass bodies in orbit around a star.

Irrespective of what we call them, physics of 
stars, planets, stellar remnants is similar. 
Balance between:

 Gravity

 Pressure



Basic assumptions (1)
73

What are the main physical processes which determine the 
structure of stars?
 Stars are held together by gravitation – attraction exerted on each part 

of the star by all other parts

 Collapse is resisted by internal thermal pressure.

 These two forces play the principal role in determining stellar structure –
they must be (at least almost) in balance. If they are not, the star will
explode or collapse on very short (dynamical) time-scale. Since stars do
seem to be rather stable on time-scale of millennium, the balance is good.

 Stars continually radiating energy into space. As they do not seem to
cool dramatically on the civilization lifetime-scale, an energy source must 
exist (we will see later that thermal energy is not enough).

 Theory must describe - origin of energy and transport to surface.



Basic assumptions (2)
74

We make two fundamental assumptions :
1. Neglect the rate of change of properties – assume constant with time.
2. All stars are spherical and symmetric about their centres. Thus, all quantities 

(e.g., density, temperature, pressure) depend only on the distance from the 
centre of the star - radius r.

Density as function of radius is  (r).

If m is the mass interior to r, then:               𝑚 𝑟 = 0׬

𝑟
4𝜋𝑟2𝜌 𝑟 ⅆ𝑟 

Differential form of this equation is:             ⅆ𝑚 = 4𝜋𝑟2𝜌ⅆ𝑟 
Two equivalent ways of describing the star:
• Properties as f(r): e.g. temperature T(r)
• Properties as f(m): e.g. T(m)
Second way often more convenient: over its lifetime, a star’s radius will change by many 
orders of magnitude, while its mass will remain relatively constant. Moreover, the amount of 
nuclear reactions occuring inside a star depends on  and T, not where it is in the star. Thus, a 
better and more natural way to treat stellar structure is to write radius as a function of mass, i.e.

ⅆ𝑟

ⅆ𝑚
=

1

4𝜋𝑟2𝜌
We will start with these assumptions and later reconsider their validity.



Stellar structure
75

For our stars – which are isolated, static, and spherically symmetric – there 
are four basic equations to describe structure. All physical quantities depend 
on the distance from the centre of the star alone
 Conservation of mass
 Equation of hydrostatic equilibrium: at each radius, forces due to

pressure differences balance gravity
 Conservation of energy: at each radius, the change in the energy flux 

equals the local rate of energy release
 Equation of energy transport: relation between the energy flux and the 

local gradient of temperature

These basic equations supplemented with
 Equation of state (pressure of a gas as a function of its density and 

temperature)
 Opacity (how opaque the gas is to the radiation field)
 Nuclear energy generation rate as f(,T).



Equation of mass conservation
76

Mass m(r) contained within a star of 
radius r is determined by the density 
of the gas ρ(r).

Consider a thin shell inside the star 
with radius r and outer radius r+dr :

 ⅆ𝑉 = 4𝜋𝑟2ⅆ𝑟

 ⅆ𝑀 = ⅆ𝑉𝜌 𝑟 = 4𝜋𝑟2𝜌 𝑟 ⅆ𝑟

In the limit where dr → 0:
ⅆ𝑀

ⅆ𝑟
= 4𝜋𝑟2𝜌 𝑟

This is the equation of mass conservation.



Hydrostatic equilibrium (1)
77

 Balance between gravity and 
gradient of internal pressure is 
known as hydrostatic equilibrium.

 Consider a small cylindrical element 
between radius r and radius r +dr  in the star.
 Its surface area = ds

 Mass of the element: ⅆ𝑚 = 𝜌 𝑟 ⅆ𝑠 ⅆ𝑟

 Mass of gas in the star at smaller radii: m = m(r)



Hydrostatic equilibrium (2)
78

Consider forces acting in radial direction:

 Outward force: pressure exerted by stellar 
material on the bottom face: 

𝐹𝑃,𝑏 = 𝑃 𝑟 ⅆ𝑠

 Inward forces:

 Gravity (gravitational attraction of all stellar 
material lying within r): 

𝐹𝑔 =
𝐺𝑚 

𝑟2
ⅆ𝑚 =

𝐺𝑚 

𝑟2
𝜌 𝑟 ⅆ𝑠 ⅆ𝑟

 Pressure exerted by stellar material on the top face:
𝐹𝑃,𝑡 = 𝑃 𝑟 + ⅆ𝑟 ⅆ𝑠

 In hydrostatic equilibrium:
𝐹𝑃,𝑏 = 𝐹𝑃,𝑡 + 𝐹𝑔

𝑃 𝑟 ⅆ𝑠 = 𝑃 𝑟 + ⅆ𝑟 ⅆ𝑠 +
𝐺𝑚 

𝑟2 𝜌 𝑟 ⅆ𝑠 ⅆ𝑟



Hydrostatic equilibrium (3)
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𝑃 𝑟 ⅆ𝑠 = 𝑃 𝑟 + ⅆ𝑟 ⅆ𝑠 +
𝐺𝑚 

𝑟2 𝜌 𝑟 ⅆ𝑠 ⅆ𝑟

 𝑃 𝑟 + ⅆ𝑟 − 𝑃 𝑟 = −
𝐺𝑚 

𝑟2 𝜌 𝑟 ⅆ𝑟 

If we consider an infinitesimal element, we write for dr → 0

𝑃 𝑟 + ⅆ𝑟 − 𝑃 𝑟

ⅆ𝑟
=

ⅆ𝑃(𝑟)

ⅆ𝑟

Hence rearranging above, we get the equation of hydrostatic equilibrium:

ⅆ𝑃(𝑟)

ⅆ𝑟
= −

𝐺𝑚 

𝑟2
𝜌 𝑟



Hydrostatic equilibrium (4)
80

The equation of hydrostatic equilibrium:

ⅆ𝑃(𝑟)

ⅆ𝑟
= −

𝐺𝑚 

𝑟2
𝜌 𝑟

Combining it with the equation of mass conservation, we obtain an alternate 
form of hydrostatic equilibrium equation, in which enclosed mass m  is used as 
the dependent variable:

ⅆ𝑃(𝑟)

ⅆ𝑚
=

ⅆ𝑃(𝑟)

ⅆ𝑟
×

ⅆ𝑟

ⅆ𝑚
= −

𝐺𝑚 

𝑟2 𝜌 ×
1

4𝜋𝑟2𝜌

ⅆ𝑃(𝑟)

ⅆ𝑚
= −

𝐺𝑚 

4𝜋𝑟4ⅆ𝑟

ⅆ𝑚
=

1

4𝜋𝑟2𝜌



Hydrostatic equilibrium (5)
81

Properties of the equation of hydrostatic equilibrium:
𝑑𝑃(𝑟)

𝑑𝑟
= −

𝐺𝑚 

𝑟2 𝜌 𝑟

1) Pressure always decreases outward

2) Pressure gradient vanishes at r = 0

3) Condition at surface of star: P = 0 (to a good first approximation)

(2) and (3) are boundary conditions for the hydrostatic equilibrium equation.



Accuracy of hydrostatic assumption (1)
82

We have assumed that the gravity and pressure forces are balanced – how valid is that ?

Consider the case where the outward and inward forces are not equal, 
there will be a resultant force acting on the element which will give rise to an acceleration a:

𝑃 𝑟 + ⅆ𝑟 ⅆ𝑠 +
𝐺𝑚 

𝑟2
𝜌 𝑟 ⅆ𝑠 ⅆ𝑟 − 𝑃 𝑟 ⅆ𝑠 = ⅆ𝑚 × 𝑎 = 𝑎 𝜌 𝑟 ⅆ𝑠 ⅆ𝑟

[Applying Newton’s second law (F=ma) to the cylinder]

acceleration = 0 everywhere if star static
ⅆ𝑃(𝑟)

ⅆ𝑟
+

𝐺𝑚 

𝑟2
𝜌 𝑟 = 𝑎 𝜌 𝑟

Now acceleration due to gravity is  𝑔 =
𝐺𝑚 

𝑟2                 

ⅆ𝑃(𝑟)

ⅆ𝑟
+ 𝑔𝜌 𝑟 = 𝑎𝜌 𝑟

This is a generalized form of the equation of hydrostatic support.



Accuracy of hydrostatic assumption (2)
83

Now suppose there is a resultant force on the element (LHS≠0).

Suppose their sum is small fraction of gravitational term (β):      𝛽𝑔𝜌 𝑟 = 𝑎𝜌 𝑟

Hence there is an inward acceleration of

𝑎 = 𝛽𝑔

Assuming it begins at rest, the spatial displacement d  after a time t  is

ⅆ =
1

2
𝑎𝑡2 =

1

2
𝛽𝑔𝑡2

ⅆ𝑃(𝑟)

ⅆ𝑟
+ 𝑔𝜌 𝑟 = 𝑎𝜌 𝑟

Calculate!



Accuracy of spherical symmetry assumption

84

Stars are rotating gaseous bodies – to what extent are they flattened at the poles?

If so, departures from spherical symmetry must be accounted for.

Consider mass m near the surface of a star of mass M  and radius r .

Element will be acted on by centrifugal force  𝐹𝑐 = 𝑚2𝑟, where = angular 
velocity of the star. 

There will be no departure from spherical symmetry provided that

𝐹𝑐

𝐹𝑔
= ൗ𝑚2𝑟

𝐺𝑀𝑚 

𝑟2 ≪ 1    or     2 ≪
𝐺𝑀 

𝑟3

Solar rotation period is about P ≈ 27 days. 

Angular velocity =2/P≈2.710-6 s-1                   Fc /Fg ~ 210-5

 …even rotation rates much faster than that of the Sun are negligibly small to 
influence star’s structure.

Angular velocity =2/P≈



Accuracy of spherical symmetry assumption

85

In terms of mean density, we get 

2 ≪
𝐺𝑀 

𝑟3
≈ 𝜋𝐺 ҧ𝜌  ҧ𝜌 ≫

4𝜋 

𝐺𝑃2
≈

1.9 × 108

𝑃2

For the majority of stars, departures 
from spherical symmetry can be 
ignored.

However, some stars do rotate rapidly 
and rotational effects must be included 
in the structure equations – 
can change the output of models.

V = (4/3) π R3

 = 2/P



Accuracy of spherical symmetry assumption

86

Isolation?  

In the Solar neighborhood, distances between stars are enormous: e.g. Sun’s 
nearest stellar companion is Proxima Centauri at d = 1.3 pc. Ratio of Solar radius 
to this distance is:

𝑅𝑠𝑢𝑛 

ⅆ
≈ 2 × 10−8

Two important implications:

 Can ignore the gravitational field and radiation of other stars when 
considering stellar structure.

 Stars (almost) never collide with each other.

Once star has formed, initial conditions rather than interactions with other stars 
determine evolution.

However, stars in double systems are elongated due to gravitational attraction.
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