
Observational Astronomy 
Problem Set 2:  Solutions. 

 

1. In an X-ray CCD, the number of electrons released when a photon is incident on the 
detector is given by N = E / w, where E is the energy of the incident photon, and w is a 
constant which depends upon the material. The variance on the number of electrons 

released is given by 𝜎𝑁
2 = 𝐹 𝑁, where F  is the Fano factor. Calculate the energy resolution 

in electron Volts of an X-ray CCD for photons of energy 2.2 keV, if w for silicon is 3.65 eV, 
and the Fano factor for silicon is 0.12. Calculate the resolving power R. 

 
 
Solution:   

𝑅 =
λ

∆λ
=

𝐸

∆𝐸
 

                                                                        FWHM=2.35 σ 

E = N w        𝜎𝐸 =
𝑑𝐸

𝑑𝑁
𝜎𝑁 = 𝑤𝜎𝑁 = 𝑤√𝐹𝑁 = √𝑤𝐹𝐸 = 31eV  

∆𝐸 = 2.35 𝜎𝐸 = 72.9 eV 

𝑅 =
𝐸

∆𝐸
= 30.2 

 
2. An instrument measures 𝑁∗=1 photon/s from an astronomical source and 

𝑁𝑠𝑘𝑦=2 photons/s from the background. If the dark current and readout noise are 

negligible, how long an exposure is required to achieve a SNR of 50? 
 
Solution:   
 
From lecture 9 (slide 364): 

S/N = 
𝑛∗

𝜎∗
  =  

𝑛∗

√𝑛∗+2𝑛𝑠𝑘𝑦
 = 

𝑁∗√𝑡

√𝑁∗+2𝑁𝑠𝑘𝑦
 = 

√𝑡

√5
 = 50         t=12500 s 

 
 

3. The first CCDs consisted of 100 x 100 pixels, with an average quantum efficiency (QE) of 
60%, while modern detectors contain 4000 x 4000 pixels (QE = 80%). Suppose that you 
were given a full night of observing time (8 hours) on a telescope with a mirror 6 m in 
diameter, equipped with such a modern CCD. How much longer would you have needed to 
cover the same area to the same depth with one of the early detectors? Assume that the 
pixel size is the same in both cases and that you use the same telescope.   

 
 
Solution:   
 
Area of the old CCD: Aold=104 
Area of the new CCD: Anew=1.6·107 



To cover the same sky area with the old CCD one need to take  
𝐴𝑛𝑒𝑤

𝐴𝑜𝑙𝑑
⁄  times more shots. 

To reach the same depth with the old CCD one need to observe  
𝜂𝑛𝑒𝑤

𝜂𝑜𝑙𝑑
⁄  longer. 

Thus, the observer with the old CCD will have to observe 

 
𝜂𝑛𝑒𝑤 𝐴𝑛𝑒𝑤

𝜂𝑜𝑙𝑑 𝐴𝑜𝑙𝑑
=

0.8×1.6×107

0.6×104 = 2133 nights (× 8 hours) = 5.8 years  

 
 

4. After measuring total counts from each star on a CCD image by removing background 

noise, one can convert instrumental counts to instrumental magnitudes.  Like the CCD 

counts, instrumental magnitudes only give relative brightness among stars on the same CCD 

frame.  
minst = -2.5 log c + constant 

 
Here c is the CCD instrumental count and minst is the corresponding instrumental magnitude. 

The constant in the instrumental system is totally arbitrary. It is fine to set it as zero, with the 

only consequence that all your instrumental magnitudes will be large negative numbers. Or 

you can set it to a large enough positive value so all the instrumental magnitudes are positive 

numbers. It doesn’t matter which you do – the only thing that matters is that the difference in 

magnitudes corresponds to a ratio of counts, which is preserved no matter what the constant 

is, since it subtracts out in the full formulation. 
Find the flux (counts) you should get from a star to reach magnitude uncertainty σmag better 

than 0.1 mag and 0.01 mag. 
 

Solution:      
 

Calculate the error propagation: 

 

𝜎𝑚𝑎𝑔 = |
𝑑𝑚

𝑑𝑐
| 𝜎𝑐 = |

−2.5

ln(10) ∙ 𝑐
| 𝜎𝑐 = 1.09 

𝜎𝑐

𝑐
=

1.09

√𝑐
 

𝜎𝑐 = √𝑐 

𝑐 =
1.092

𝜎𝑚𝑎𝑔
2 =

1.18

𝜎𝑚𝑎𝑔
2  

 

Thus, for σmag < 0.1 mag     c > 118;  for σmag < 0.01 mag     c > 11800 
 
 
 

5. Suppose that you were awarded observing time with the Hubble Space Telescope to 
observe the individual stars in a very compact multiple star consisting of five components. 
You have been able to measure magnitudes m of components to be 21.8±0.03, 19.8±0.01, 
20.1±0.02, 19.4±0.01, 22.8±0.04. From the ground-based telescope, because of seeing-
limited observing conditions, you will see just one brighter star instead of five components 
of a multiple star. Calculate its magnitude m and σm. 

 
 
 



Solution:   
 

m=-2.5 log F                F=2.512-m          𝐹𝑠𝑢𝑚 = ∑ 2.512−𝑚𝑖
𝑖  

 

𝑚𝑠𝑢𝑚 = −2.5 log ∑ 2.512−𝑚𝑖

𝑖
= 18.463 

 

𝜎𝑚,𝑠𝑢𝑚
2 = ∑ [−2.5

𝑑 (log ∑ 2.512−𝑚𝑖
𝑖 )

𝑑𝑚𝑖
]

2

𝜎𝑚𝑖
2 =

𝑖

= ∑ [−2.5
ln 2.512 × 2.512−𝑚𝑖

ln 10 × ∑ 2.512−𝑚𝑖𝑖
]

2

𝜎𝑚𝑖
2 = ∑ [

2.512−𝑚𝑖

𝐹𝑠𝑢𝑚
]

2

𝜎𝑚𝑖
2

𝑖
= 4.84 × 10−5

 𝑖
 

 
 

𝜎𝑚,𝑠𝑢𝑚 = 0.007 

 

𝑚𝑠𝑢𝑚 = 18.463 ± 0.007 


