Observational Astronomy

Problem Set 2: Solutions.

1. Inan X-ray CCD, the number of electrons released when a photon is incident on the
detector is given by N = E / w, where E is the energy of the incident photon, and w is a
constant which depends upon the material. The variance on the number of electrons
released is given by 0,\2, = F N, where F is the Fano factor. Calculate the energy resolution
in electron Volts of an X-ray CCD for photons of energy 2.2 keV, if w for silicon is 3.65 eV,
and the Fano factor for silicon is 0.12. Calculate the resolving power R.

Solution:
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2. Aninstrument measures N,=1 photon/s from an astronomical source and
Ny, =2 photons/s from the background. If the dark current and readout noise are
negligible, how long an exposure is required to achieve a SNR of 50?

Solution:

From lecture 9 (slide 364):
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3. The first CCDs consisted of 100 x 100 pixels, with an average quantum efficiency (QE) of
60%, while modern detectors contain 4000 x 4000 pixels (QE = 80%). Suppose that you
were given a full night of observing time (8 hours) on a telescope with a mirror 6 min
diameter, equipped with such a modern CCD. How much longer would you have needed to
cover the same area to the same depth with one of the early detectors? Assume that the
pixel size is the same in both cases and that you use the same telescope.

Solution:

Area of the old CCD: Ayq=10*
Area of the new CCD: Aney=1.6-10"



To cover the same sky area with the old CCD one need to take A"eW/A 0 times more shots.
o

To reach the same depth with the old CCD one need to observe nnew/nold longer.
Thus, the observer with the old CCD will have to observe
Nnew Anew __ 0.8X1.6x107

Nold Aold 0.6x10%

= 2133 nights (x 8 hours) = 5.8 years

4. After measuring total counts from each star on a CCD image by removing background

noise, one can convert instrumental counts to instrumental magnitudes. Like the CCD
counts, instrumental magnitudes only give relative brightness among stars on the same CCD
frame.

Minst = -2.5 log ¢ + constant

Here cis the CCD instrumental count and mjg; is the corresponding instrumental magnitude.
The constant in the instrumental system is totally arbitrary. It is fine to set it as zero, with the
only consequence that all your instrumental magnitudes will be large negative numbers. Or
you can set it to a large enough positive value so all the instrumental magnitudes are positive
numbers. It doesn’t matter which you do — the only thing that matters is that the difference in
magnitudes corresponds to a ratio of counts, which is preserved no matter what the constant
is, since it subtracts out in the full formulation.

Find the flux (counts) you should get from a star to reach magnitude uncertainty omaq better
than 0.1 mag and 0.01 mag.

Solution:

Calculate the error propagation:
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Thus, for 6, <0.1 mag = ¢ > 118; for oy,g<0.01 mag - c¢> 11800

5. Suppose that you were awarded observing time with the Hubble Space Telescope to

observe the individual stars in a very compact multiple star consisting of five components.
You have been able to measure magnitudes m of components to be 21.8+£0.03, 19.84+0.01,
20.1+0.02, 19.4+0.01, 22.8+0.04. From the ground-based telescope, because of seeing-
limited observing conditions, you will see just one brighter star instead of five components
of a multiple star. Calculate its magnitude m and on,.



Solution:

m=-2.5 log F F=2.512" Foym = 2 2.5127™i

Meym = —2.51ogz_2.512-mi = 18.463
l
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Tmsum = 0.007

Meym = 18.463 + 0.007

= 4.84 x 1075



