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Aperture photometry (2)

 Assume we have two apertures, one on the star and one on sky. Star 

aperture includes sky as well, and our estimate of the star intensity is 

the difference between the two. 

 Signal in the sky aperture is:

 nsky = β Nsky

 Signal in the star aperture is:

 n*+sky = β Nsky + Nstar

416



Noise on the measurements

 Noise on the measurements has two components, photon noise which is given by the 

square root of the number of photons, and readout noise, which is determined by the 

readout noise and by the number of pixels in the aperture. The noise components 

add in quadrature:

σsky
2 = nsky + npix σR

2 

σ*+sky
2 = n*+sky + npix σR

2

n*  n*+sky – nsky

 σ*
2 = n*+sky + nsky + 2 npix σR

2

σ*
2 = 2 β Nsky + Nstar + 2 npix σR

2
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Signal to Noise ratio

S/N = n* / σ* = Nstar / σ*

𝑆

𝑁
=

Nstar

2 βNsky+Nstar + 2 𝑛pixσR
2

If exposure time is short then readout noise (σR~10) will dominate,

especially when seeing is bad.
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Note: seeing comes in with npix term

Nstar = η εatm εtel εfilt εwin εgeom φ* Δλ A t
Nsky = η εatm εtel εfilt εwin εgeom φsky Δλ A t



What is ignored in this S/N eqn?
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 Bias level/structure correction

 Flat-fielding errors

 Charge Transfer Efficiency (CTE)

0.99999/pixel transfer

 Non-linearity when approaching full well

 Scale changes in focal plane

 A zillion other potential problems



Improving the Signal to Noise (1)

 Larger Sky Aperture – Increasing the sky aperture and scaling it to the size of the 

object aperture, or using several sky apertures and averaging them, reduces the 

noise to: 

σ*
2 = ζ β Nsky + Nstar + ζ npix* σR

2

    

where ζ = ( 1 + npix* / npix_sky), and npix* and npix_sky are the number of pixels in the 

star and sky apertures respectively. In practice, the sky aperture is often an annulus 

around the star aperture. Must be careful that stars do not get in the sky aperture!
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Improving the Signal to Noise (2)

 Smaller object aperture – reducing the object aperture reduces both sky noise and 

readout noise. However, you lose signal. The problem is if you are comparing the 

signal in different images, and fluctuations in image size (seeing) cause the amount of 

signal you lose to vary, then this introduces systematic errors in the brightness 

measured (photometry).

Solution – Aperture Correction
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Aperture Correction (1)

 The point spread function (PSF) is the shape of the CCD image of a 

point (unresolved) source of light.

 Since the PSF is the shape of a point of light on the CCD, and since all 

stars are points, then all stars have exactly the same shape and size on 

the CCD, if aberrations are not significant.

 The PSF does not have an edge. The intensity of the star fades smoothly 

to zero with increasing radius, but there is no place that we could call an 

“edge”.
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Aperture Correction (2)

Brighter stars may look bigger, but 

that is caused by the following effect: 

the shape of the faint and bright star 

are exactly the same, we are simply 

looking at a larger diameter at a 

given intensity for a bright star than 

for a faint star.
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Aperture Correction (3)

 If we want to measure all the light from a star, 

how far out in radius do we have to go?

 One logical answer might be: as big as possible, to get “all” the light from the star. 

This is not a good answer.

 Reducing the object aperture reduces both sky noise and readout noise.

 But, a small aperture will only encompass a fraction of the total light from the star! 

However, if the seeing were constant, any aperture would measure the same fraction 

of light for any star, and when comparing one star with another the effect would 

cancel out.
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Aperture Correction (4)

 The problem is that seeing is not constant. A small aperture might 

measure 0.5 of the total light from a star on one CCD image, then, if 

the seeing worsens, the same size aperture might measure only 0.4 of 

the light from the star on the next CCD image.

 Seeing affects mostly the inner Gaussian core of the image. Using an 

aperture 4 to 10 times the diameter of the typical FWHM will get 

most of the light. In this size aperture, reasonable variations in the 

seeing will not result in measurable variations in measured counts.
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Aperture Correction (5)

 However, for faint objects, an aperture 4 times the FWHM will contain 

a lot of sky signal. This will result in a low S/N ratio. 

 Aperture Correction: If we measure the bright object in a small 

aperture (say radius = 1 FWHM) and also in a bigger aperture which 

gets “all” the light (say 4 FWHM) we can easily find the ratio of light 

in the small to large aperture (which we express as a magnitude 

difference).
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Aperture Correction (6)

 The aperture correction is defined as:

∆ = minst(4 FWHM) − minst(1 FWHM)

(∆ is always a negative number)

 How do we use the aperture correction?

total = minst(1 FWHM) + ∆

 “Total” is our estimate of the total instrumental magnitude in the faint 

star, minst(1 FWHM) is the measured magnitude in the small aperture 

for the faint star, and ∆ is the aperture correction derived from a 

bright star in the same frame.
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Aperture Correction (7)

 There must be an optimum aperture size that gives the maximum S/N. 

 The optimum size of the small aperture has been studied by several 

authors. 

 The optimum aperture seems to be achieved when the measurement 

aperture has a diameter about 1.4 × FWHM of the PSF. At this 

aperture, the aperture correction is about −0.3 mag. 

 However, the S/N does not appear to be too sensitive to the exact 

small aperture size.
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Improving the Signal to Noise (3)

 On-chip binning – Most CCDs have the option of binning: combining a set 

of adjacent pixels into a single pixel produced as output. For example, a 

square of 4 pixels on the CCD chip might be reported as one pixel 

containing their combined value. But you only have to read the output 

capacitor out once and you only get one lot of readout noise.
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On-chip binning

 This way you reduce readout 

noise at the expense of 

resolution. Resolution should 

always be smaller than the 

characteristic size of the star 

images.
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Profile Fitting (1)

 Profile fitting is used most commonly in crowded fields, where it is 

difficult or impossible to define a sky aperture free of stars 

(or galaxies).

 It does however offer an advantage in precision even in sparse fields, 

because it weights the data more correctly.
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Profile Fitting (2)

 Basic assumption is that the intensity profile (which is in principle a 2 

dimensional function) is the same for all stars in a particular CCD 

image.

 Intensity profile is determined by seeing or by diffraction, or 

occasionally by aberrations. 

 If it is determined by aberrations you need to be very careful, 

because the assumption that the profile is the same at all positions on 

the CCD may not be correct.
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Profile Fitting (3)

 From a set of isolated, comparatively bright (but not saturated) stars in the 
frame, determine the image profile, this is called the Point Spread Function 
(PSF).

 For ground based data an empirical approximation to the PSF is 
the Moffat function:

f(r) = Ci (1 + r2/R0
2)-β + Bi    (r < rmax)

f(r) = Bi (r > rmax)

    R0 is the characteristic radius of the star image, 
r is the distance from the centre of the image, 
β describes the overall shape of the PSF, 
Bi is the background in the region of star i, and 
Ci is the relative brightness of star i.

433



Profile Fitting (4)

FWHM=2 R0 21/β − 1

 Fit this function for each of the stars in the image to the data, using 

a least squares or similar technique. 

 For each star determine Bi and Ci. 

R0 and β are constant within an image.
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Profile Fitting (5)

 Then we have a set of scaling factors, which can be converted to a 
relative magnitude.

 We need aperture photometry of one star, either from this CCD frame or 
from another, this can be a bright isolated star with high S/N, this gives 
the magnitudes of all of the stars in the frame.

 The fit gives the correct weighting, rather than adding in lots of pixels 
with very little signal, S/N from profile fitting is usually at least a factor 
of 2 higher than from aperture photometry.

 Profile fitting can cope with fields in which stars are close or their images 
even overlap.
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Profile Fitting (6)

 For ground-based data the PSF is determined by the seeing, and must 

be redetermined for each CCD image.

 For space based (e.g. Hubble Space Telescope) data the PSF is fixed, 

and is often available as part of the standard calibration data 

produced with the observations. 

It still depends upon the passband (filter). 
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Extracting Photometric Data

 Determining the number of counts from a source in an image is usually a three-step 

process (we follow a technique known as aperture photometry):

1. To measure the centre of the source, which we shall assume is a star. 

2. To estimate the sky background at the position of the star. 

3. To calculate the total amount of light received from the star.

 The sky annulus is unlikely to contain counts from the sky alone. There will also be 

contributions from cosmic rays, hot pixels, faint stars, and the wings of the PSF of 

the central star. All of these will add a positive skew to the histogram of pixel 

values in the annulus. The mean of these pixel values will then not be an accurate 

representation of the sky background. 

Instead, the sky level is usually determined using 

a more robust estimator, such as the median.

 The total signal from the star can then be calculated by 

summing the counts from each pixel that falls inside the 

aperture (usually a circle or ellipse), and then subtracting 

the determined sky background from each pixel.
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Differential (Relative) Photometry
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 Even if the intrinsic brightness of the star is constant, the number of counts we 
detect might change, due to transparency variations or seeing variations. To 
obtain an accurate light-curve we need to correct for these effects, using a 
comparison star. 

 This is a second star which is known (or assumed) to have 
a constant flux. We assume that the comparison star is 
affected in the same way as our target star by seeing 
and transparency variations (this is a very good assumption). 

 Therefore, if transparency or seeing variations cause 
the counts from the target star, Nt, to halve, they will 
also cause the counts from the comparison star, Nc, to 
halve. 
The ratio Nt/Nc is therefore corrected for transparency 
and seeing variations. Correcting aperture photometry 
this way is known as differential or relative photometry.

Courtesy of Vik Dhillon



Calibrated  Magnitudes (1)
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 Once the sky-subtracted signal from an object, measured in counts, is 
extracted from an image, it is useful to convert it to a calibrated magnitude 
in a photometric system:

 Calculate the instrumental magnitude, from the counts per second.

 Determine the extinction coefficient, and correct the instrumental magnitude to the 
above-atmosphere value.

 Repeat the above steps for a standard star and use the resulting above-
atmosphere instrumental magnitude of the standard star to calculate the zero 
point.

 Use the zero point to transform the above-atmosphere instrumental magnitude of 
the target star to the required photometric system.



Procedures for photometry

 If we have standard stars in the CCD field that we 

are observing, then its fairly easy to calibrate, as we 

can just use the Nt values as our measure of intensity.

 If not then we need to observe standard stars in 

separate CCD frames, and as the PSF will vary 

between different frames, we need to find a true 

measure of the brightness of the stars.

Nt = Ci ∫0

rmax

  2πr ( 1 + r2/R0
2)-β dr

    rmax is chosen so that we get all of the light.

(The Moffat function, see the previous lecture)
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Instrumental Magnitudes (1)

 We have the sky-subtracted signal from our target object, in counts, 
Nt. We convert this to an instrumental magnitude, using the formula:

minst = -2.5 log10 (Nt / texp) 

    where texp is the exposure time of the image in seconds. 

 The instrumental magnitude depends on the characteristics of the 
telescope, instrument, filter and detector used to obtain the data. 

 We need to compare the instrumental magnitudes of stars of known 
magnitude with their true magnitudes, to calculate the offset, and 
thus to calculate the true magnitudes of all of the stars in the frame.

 The relationship between instrumental magnitudes and calibrated 
magnitudes can be understood as follows. The counts per second 
Nt / texp is proportional to the flux, Fλ. Hence

minst = -2.5 log10 (c Fλ) = -2.5 log10 (Fλ) + c ’
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Instrumental Magnitudes (2)

 Therefore, instrumental magnitudes are offset from calibrated magnitudes by 
a constant:

mcalib = minst + mzp 

    where the constant, mzp , is known as the zero-point. 

 The zero-point depends upon the telescope and filter used. We can understand this 
because if we used a larger telescope to observe a star, the instrumental magnitude 
would change, but the calibrated magnitude must not!

 An object with a calibrated magnitude equal to the zero-point gives one count-per-
second at the telescope. 

 For example, suppose the zero-point of a telescope/filter combination is mzp =19.0. 
If we observe a star with mcalib =19.0, then it follows that, for this star minst =0. 
By definition then, this star gives one count-per-second.
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minst = -2.5 log10 (Nt / texp) 



Atmospheric absorption

 The next step is to convert the 

instrumental magnitude, which 

is measured on the surface of 

the Earth, to the instrumental 

magnitude that would be 

observed above the 

atmosphere.

 Atmospheric absorption is 

proportional to the airmass, 

which is proportional to the 

secant of the angular distance 

from the zenith. Strictly this 

assumes a plane parallel 

atmosphere, but this is a good 

approximation for z < 70°.
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X = sec Z = [sin φ sin δ + cos φ cos δ cos h]−1

φ is the latitude of the observatory, h is the hour angle 

of the source, and δ is the declination of the source.



Atmospheric extinction

 The effect of atmospheric extinction on photometry is usually expressed as:

mobs = mtrue + k(λ) sec Z = mtrue + k(λ) X

Here, mtrue is the magnitude of the source outside the Earth’s atmosphere, mobs is the magnitude 

observed,

k(λ) is the “extinction coefficient” [magnitudes per unit airmass].

 The dominant source of extinction in the atmosphere is Rayleigh scattering by air molecules. This 

mechanism is proportional to λ−4, which means that extinction is much higher in the blue than in the red.

 The extinction coefficients k(λ) have been carefully 

measured and tabulated for a number of observatories. 
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Filter λc (Å) k

U 3660 0.55

B 4380 0.25

V 5450 0.15

R 6410 0.09

I 7980 0.06

The extinction coefficients on 

a typical (undusty) night on La Palma



Extinction coefficient (1)

 However, the extinction can vary from night to night depending 

on the conditions in the atmosphere, e.g. dust blown over from 

the Sahara can increase the extinction on La Palma during the 

summer by up to 1 magnitude.

 How do we find k in practice?

if we plot instrumental magnitudes vs airmass for a particular 

star, k is just the slope of the line that passes through the 

observed points:

𝑘 =
∆𝑚𝑖𝑛𝑠𝑡

∆𝑋
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Extinction coefficient (2)

 Even two measurements of the instrumental magnitude of a star at two different 
zenith distances is enough to estimate k (although less accurate): 
subtracting mz1 = m0 + k sec Z1 from mz2 = m0 + k sec Z2 eliminates m0, allowing k 
to be derived.

 For more accurate photometry: observe a set of standard stars (of known magnitude) 
at different airmass.

 Note that no explicit extinction correction is required when performing differential 
photometry: the target and comparison stars are always observed at the same 
airmass and hence suffer the same extinction. Hence, the variation due to extinction 
present in the comparison star is removed from the target star.
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