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Maintaining figure and alignment

 In order to maintain the image quality at the limit 
set by diffraction (or the atmosphere) it is important 
to:

 maintain the paraboloidal figure of the primary 
reflector

 maintain the alignment of the optical axes of the 
primary, secondary and any tertiary reflector with 
power (i.e. non-flat)

 maintain the relative orientation of the reflectors, i.e 
they must not tilt with respect to each other.

If you do not do this you get aberrations (coma and astigmatism)
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Homologous deformation 

 Any telescope designed to operate at a wavelength 

λ should have its surface manufactured to a 

tolerance of λ/20 to maintain diffraction limited 

performance. 

 It should maintain this accuracy as its orientation 

changes, i.e. as it tracks a source across the sky.

 Mechanically this is possible for small steerable 

dishes (10 metres diameter or less) but difficult for 

larger structures.
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Homologous deformation (radio telescopes)

 Strictly what is required is not that its figure should 

not change with orientation, but that its figure 

should remain a paraboloid of rotation.

 Large radio telescopes are designed to deform but 

to remain paraboloids. 

 The Effelsberg 100 metre diameter steerable dish 

deforms by up to 6cm, but remains a paraboloid to 

< 0.4 mm, so it performs to specification at 

wavelengths as short as 1cm.
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Radio telescope performance

 Radio telescope performance in terms of 

maintaining the figure is usually limited by thermal 

expansion effects and by wind. For this reason, 

many modern high-frequency radio telescopes are 

not made from steel or aluminium, but from more 

exotic materials such as Carbon Fibre or other 

composite materials.

111



Lovell telescope at Jodrell bank
112



Parkes Radio telescope, Australia

Above a modern photo, to the left in 1969. 

What is the difference? Why?
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64-m diameter parabolic dish



RATAN-600, Russia
114

A 576 m diameter circle of rectangular radio reflectors and a set of secondary reflectors and receivers



This Photo by Unknown Author is licensed under CC BY

Arecibo radio telescope, Puerto Rico
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https://www.universetoday.com/tag/red-dots/
https://creativecommons.org/licenses/by/3.0/


Arecibo radio telescope, Puerto Rico
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A 305 m spherical reflector



A new king of radio-astronomy – FAST (China)
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Five-hundred-meter Aperture Spherical Telescope (FAST)



FAST (China)
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 Diameter: 500 m

 Illuminated diameter: 300 m

Comparison of the Arecibo (top), FAST (middle) 

and RATAN-600 (bottom) at the same scale.



Optical telescopes - active mirror support

 In an optical telescope the primary reflector is 

usually a zero expansion glass surface coated with 

a reflecting metal. In small telescopes this can be 

rigid and maintain its structure.

 In larger telescopes the deformations are modelled 

as a function of telescope attitude, and a series of 

pneumatic or hydraulic actuators are used to apply 

the correct force at each point on the mirror to 

make sure the shape is maintained. 
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The VLT primary mirror support

The VLT primary 

mirror support, 

showing 150 

actuators arranged 

in six concentric 

rings.
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Segmented mirror telescopes

 In the Keck and GranTeCan (GTC) 
telescopes, instead of a single monolithic 

mirror, the mirror is built up of hexagonal 

segments, which can be controlled 

accurately to bring their light to the 

same focus at the same phase. These 

telescopes are Cassegrain altitude-

azimuth designs. 
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GTC telescope
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Segments are kept aligned 

and in phase by 

electromechanical support 

and feedback system



The Serrurier Truss

 It is very important to keep the optical axes of the 
paraboloidal and/or hyperboloidal primary and 
secondary mirrors precisely aligned, otherwise you get 
coma even on-axis.

 The Serrurier truss is an open “tube” structure designed 
so that at any orientation the flexure of primary and 
secondary mirrors is identical, maintaining the 
alignment.

 This design allows a relative rotation of primary and 
secondary mirrors, which can in turn be corrected by 
pneumatic and/or electromechanical actuators.
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The Serrurier Truss
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Southern African Large Telescope

 The segmented 11 by 9.8 meters mirror is spherical.

 SALT has a fixed zenith angle of 37 degrees, 

optimised for the Magellanic clouds.

 Azimuth only tracking.

 Prime focus top end moves Arecibo style.

 Limited sky area and tracking time.

 Much cheaper than telescopes of similar size but of 

classical design.
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New Large Telescopes

 Current state of the art in optical/near infra-red telescopes is:

 8.2 metre monilithic meniscus mirror (VLT)

 10 metre equivalent mirror with hexagonal segments (GTC).

 Various proposals for larger 20-100 metre aperture telescopes.

 The European Extremely Large Telescope (ELT) is already under 
construction.

 International 30 metre telescope (TMT) 
is preparing to start construction.

 In June 2025 the United States' National Science Foundation dropped 
support for the TMT in favor of the the Giant Magellan Telescope (GMT).
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Problems of Extremely large telescopes

 Need light stiff structures, composite materials, e.g. Silicon 
Carbide for mirror segments.

 Large downward looking secondary is a huge problem, carbon 
fibre structures.

 Control loop to keep segments aligned is heavily nested 
hierarchical control at hundreds of Hz, beyond the scope of 
current hardware.

 Wind distortion a severe problem.

 Adaptive mirrors up to a metre across may be required.

 Need Multi-Conjugate Adaptive optics with laser guide stars (see 
next lectures).

 Huge data rates.
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The European Extremely Large Telescope

 Diameter: 39 m (798 hexagonal 1.4 m mirror segments).
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 Diameter: 39 m (798 hexagonal 1.4 m mirror segments).
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The European Extremely Large Telescope



 Current state (6 September 2025, 21:00 CEST)

 2028 (planned): Technical first light of the ELT
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The European Extremely Large Telescope

https://elt.eso.org/about/webcams/
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International 30 metre telescope (TMT)
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Giant Magellan Telescope (GMT)
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7 x  8.4-m mirrors → a 25.4-m surface



Telescopes for high-energy astrophysics 134



The high-energy spectrum

 Extreme ultraviolet (EUV): 100 – 1000 Å (12-120 eV)

 Soft X-rays: 10 – 100 Å (120 – 1200 eV)

 X-rays: 0.1 – 10 Å (1.2 – 120 keV)

 Soft γ-rays: 0.01 – 0.1 Å (120 – 1200 keV)

 γ-rays: <0.01 Å (>1.2 MeV)

λ [Å] = 12.40/E [keV]
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The high-energy spectrum

The main production mechanisms:

 Synchrotron radiation

 The inverse Compton effect

 Free-Free (Bremsstrahlung) radiation

The flux of the radiation varies enormously with wavelength:

 The solar optical flux – 1021 photons m-2 s-1

 The solar flux at 10 Å – 5×109 photons m-2 s-1

 The total flux from all sources for energies >1GeV – few photons m-2 day-1
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UV, X-ray, and γ-ray Telescopes

 All radiation at λ < 3100 Å is absorbed by the 
atmosphere. 

 UV (2000 – 3000 Å) and hard X-rays can penetrate 
to an altitude of 30 – 40 km while soft X-rays only 
reach higher altitude: 

 therefore, all UV and X-ray observations have to be 
carried out from rockets or from space.

 Ultraviolet telescopes are similar to optical in design, 
but must be in space. The Hubble Space Telescope is 
the premier ultra-violet telescope.
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X-ray telescopes

 Imaging of high-energy photons is a much more 

difficult task because of their extremely penetrating 

nature. 

 Normal designs of telescope are impossible: 

 in a refractor the photon would be absorbed, scattered 

or unaffected rather than refracted by the lens; 

 in a reflector the photons would just pass through any 

material they impinge on at normal incidence. 
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X-ray telescopes

 X-rays at normal incidence are not reflected by 

anything, however, at energies <~100 keV, photons 

may be reflected with up to 50% efficiency off metal 

surfaces, when their angle of incidence approaches 90º 

– grazing incidence.

 Approximate empirical formula for the critical angle is 

θC = 69 × √𝜌/𝐸 arcminutes 

where ρ is density of material in g/cm3 and E is energy 
of X-rays in keV.
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X-ray telescopes

 For e.g. nickel or gold, critical angle is of order few 
degrees for 1 keV X-rays, <0.6º for 10 keV X-rays, 
and <0.1º for 100 keV X-rays.

 However, at energies under a few keV, forms of 
reflecting telescope can be made. Imaging X-ray 
optical systems were introduced by Hans Wolter.

 Its not an easy technology though, there are some 
difficult problems.

140



Problems with grazing incidence telescopes

 A telescope with a single grazing incidence 

paraboloid suffers from severe astigmatism away 

from the optical axis.

 The aberrations can be corrected by using a pair of 

confocal surfaces of rotation (i.e. surfaces with a 

common focus), one a paraboloid and the other 

a hyperboloid or ellipsoid.

 Surfaces must be extremely accurate for grazing 

incidence mirrors to work efficiently (remember λ/20).
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Wolter type I telescope

 Wolter Type I telescope – has a grazing incidence 
paraboloid followed by a grazing incidence 
concave hyperboloid.
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Wolter type II telescope

 Wolter Type II telescope - uses a convex secondary 
hyperboloid and has a longer focal length (allowing 
the detectors to be physically larger and easier to 
make).
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Wolter type III telescope

 Wolter Type III - telescope uses a convex 

paraboloid and a concave ellipsoid, gives an even 

longer focal length.
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Wolter telescopes (summary)

 Wolter Type I telescope – has a grazing incidence 
paraboloid followed by a grazing incidence 
concave hyperbolid.

 Wolter Type II telescope - uses a convex secondary 
hyperboloid instead of a concave one and has a 
longer focal length (allowing the detectors to be 
physically larger and easier to make).

 Wolter Type III - telescope uses a convex 
paraboloid and a concave ellipsoid, gives an even 
longer focal length.
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Wolter telescopes

 Wolter telescopes are two mirror telescopes, 

somewhat analogous to the Cassegrain and 

Ritchey-Chrétien optical systems in use at longer 

wavelengths.

 The Wolter Type I is the shortest of these long 

systems and therefore has been extensively utilized 

as a telescope in X-ray astronomy.
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General Imaging Properties

Small grazing angles result in larger focal length:

𝑑/𝑓 = 2 × sin 4𝛼, where d is aperture size, f – focal length, 𝛼 – the slope angle of the 

1st mirror element (approximately the grazing angle for paraxial rays).

𝒅/𝒇 is typically around 1/10 for the energy band up to 10 keV
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General Imaging Properties

The field-of-view: Wolter optics with a lower ratio 𝑑/𝑓 have smaller fields-of-view 

than those with larger ratios.

For example: 

ROSAT – soft X-ray telescope (𝑑/𝑓~1/3) – had field of view diameter of 2º.

XMM-Newton has the CCD cameras which cover about 30´.
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General Imaging Properties

Angular Resolution: The limit of the resolution is due to surface irregularities in the 

mirrors, rather the diffraction limit of the system.

The lower limit of the irregularities is about 3-4 Å in size for the very best of the current 

production techniques – comparable with the wavelength of photons of about 1 keV.

Chandra has the resolution of <1”, XMM-Newton – 16”, Swift – 18”.

For the resolution of around 1’ the mirror shapes can be simple cones – fabrication costs are 

much reduced.
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General Imaging Properties

Collecting Area: For small slope angles α the geometrical collecting area of a mirror 

shell is a thin circle with a projected area S of

𝑆 ≈ 2𝜋𝑟 × 𝑙 sin 𝛼

where r is the mirror radius and l the length of a mirror element.

This is much less than the polished mirror surface.
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Nested grazing incidence telescopes

 Effective area can be increased by nesting grazing incidence 

telescopes one inside the other.
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Chandra X-ray telescope

 The basic optical design of Chandra

152



Chandra X-ray telescope
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XMM-Newton 58 nested mirrors
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The Nuclear Spectroscopic Telescope Array (NuSTAR)
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133 nested mirrors (a conical approximation)



Satellite missions with Wolter telescopes

Mission Year 

of 

launch

Upper 

Energy 

limit (keV)

Focal 

length 

(m)

Mirror 

modules

Degree 

of 

nesting

Effective area 

@ 1 keV (cm2)

On-axis 

resolution

ROSAT 1990 0.3-2.5 2.4 1 4 420 3”

Chandra 1999 10 10.0 1 4 780 <1”

XMM-

Newton

1999 15 7.5 3 58 4260 16”

Swift 2004 10 3.5 1 12 130 18”

Suzaku 2005 12 4.75 4 175 2250 120”

NuSTAR 2012 3-79 10.15 2 133 847 (9 keV) 45”

AstroSat 2015 8 2 1 41 200 (1.5 keV) 120”

Spektr-RG / 

eROSITA

ART-XC

2019

10

5-30

1.6

2.7

7

7

54

28

2400

450 (8 keV)

16”

45”
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High energy imaging by collimation

 High energy x-rays and gamma rays cannot be 

focussed, but some degree of directionality is 

possible by using a collimator, which restricts the 

angle of acceptance.
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High energy imaging by collimation

 Simplest collimator design is a honeycomb collimator 

which is a closely packed array of tubes.
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Lobster Eye imaging collimator

 Lobster Eye imaging collimator is 

essentially a honeycomb collimator 

curved into a portion of a sphere and 

with a position sensitive detector also 

curved onto a spherical surface. 

 Lobster eye collimator uses grazing 

incidence reflection, rays which pass 

straight through form a background.

 Gives moderate quality imaging over 

a wide field.
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Lobster Eye imaging collimator
160

The Lobster-eye X-ray Telescope (LXT) is an approved NASA mission for the study of diffuse sources. 

LXT combines very large field of view with good angular and energy resolution.



Laue Diffraction

 X- and gamma-rays are diffracted by certain 

crystals, and give rise to a pattern of spots for a 

normal incidence beam.

 For some crystals (e.g. germanium) the number of 

spots is quite small.
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Laue Diffraction telescope

Crystals are oriented such that the spots from crystals in a ring 

fall on the same part of the detector.

(Still not in use, only experiments!)
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