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Time Domain Analysis: Convolution

 The convolution h(t) of two functions x(t) and y(t) is

ℎ 𝑡 = 𝑥 𝑡 ∗ 𝑦(𝑡) ≝ න

−∞

+∞

𝑥 𝜏 𝑦(𝑡 − 𝜏) ⅆ𝜏

Basic properties are 
commutativity:  x  y = y  x
distributivity over addition:  x  (y+z) = x  y + x z

 Convolution theorem: The Fourier transform of the 
convolution is the product of the individual Fourier 
transforms:    F (x  y) = F (x) · F (y)

F (x · y) = F (x)  F (y) 


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e.g.: x(t) y(t)  X(ν)·Y(ν)



Time Domain Analysis: Cross-correlation

 Correlation (Cross-correlation) is quite a similar 
operation to convolution. The correlation Corr(x,y) of two 
functions x(t) and y(t) is

𝐶𝑜𝑟𝑟 𝑥, 𝑦 = (𝑥 ⋆ 𝑦) 𝜏 ≝ න

−∞

+∞

𝑥 𝑡 + 𝜏 𝑦(𝑡) ⅆ𝑡

The correlation is a function of 𝜏, which is called the lag.

Unlike for convolution,  x ⋆ y  y ⋆ x

 The cross-correlation theorem: The Fourier transform 
of the cross-correlation of two functions is the product of 
the individual Fourier transforms , where one of them has 
been complex conjugated:         x(t) ⋆ y(t)  X(ν) · Y*(ν) 
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Time Domain Analysis: Autocorrelation

 The correlation of a function with itself is called its 
autocorrelation. 

 The related autocorrelation theorem is also known as the 
Wiener-Khinchin theorem and states

x(t) ⋆ x(t)  X(ν) X*(ν) = 𝑋 2

 The Fourier transform of an autocorrelation 
function is the power spectrum, or equivalently, 
the autocorrelation is the inverse Fourier 
transform of the power spectrum.
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Time Series  DFT  Autocorr.  PSD

xj

(function)


DFT

Xk

(transform)

 

xj⋆xj

(autocorrelation)


DFT
𝑋𝑘

2

(power spectrum)

192



Time Domain Analysis: Autocorrelation

 The discrete 
autocorrelation of a 
sampled function x(t) is 
just the discrete correlation 
of the function with itself. 

 Obviously this is always 
symmetric with respect to 
positive and negative lags.

 100 random numbers with 
a "hidden" sine function, 
and an autocorrelation of 
the series on the bottom.
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Cross Correlation

 Cross correlation is a standard method of estimating 
the degree to which two series are correlated.

 Consider two series x(i) and y(i) where i=0,1,2...N-1, 
with mx and my are the means of the corresponding 
series. The discrete cross correlation r at the lag d is 
defined as
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Example: two time series x,y.
The cross correlation with a 
maximum delay of 4000.

Cross Correlation

There is a strong correlation at a delay 
of about 40.
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O–C diagram [1]

 Basic period analysis consists of finding a reliable 
ephemeris of the main periodic variation and modelling 
of the first order effects.

 The model is usually a linear ephemeris, i.e. a prediction 
of eclipse times that assumes a constant period.

 O-C diagram is a powerful diagnostic tool, which 
compares the actual timing of an event (e.g. the mid-
point of an eclipse or a pulsation cycle peak ) to the 
moment we expect this event is occurred in a case of 
constant periodicity.

 O-C stands for O[bserved] minus C[alculated]
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O–C diagram [2]

 It might appear that a period is incorrect OR variable.

 The period variations are usually delicate. By building 
O-C diagrams one can measure very subtle changes in the 
period happening with the star.

 The horizontal axis of the an O-C diagram most often 
represent time, usually expressed in days or cycles. The 
vertical axis is the "O-C " part which can expressed in days 
or a fraction of the period. 

 Different phenomena, such as a constant but incorrect 
period, period increasing or decreasing at a constant rate, 
or sudden period changes but constant period thereafter, 
have distinct patterns on the O-C diagrams.
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O–C diagram: constant periods [1]
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If the period is constant and 

if its value is known, then

Tm=T0+P E

where Tm is the time of 
maximum or minimum 
light, T0 is the zero epoch 
and E is the number of 
cycles elapsed since the zero 
epoch.

T0 and P are obtained through a 
least-squares solution (like we did 
in the very beginning of the course). 
The ephemeris calculation yields
Tmin = 2445157.8072 + 0.201043E



O–C diagram: constant periods [2]
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 The ephemeris: Tmin = 2445157.8072 + 0.201043E

 Middle set: based on the period P=0.201043;

 Lower graph: slightly longer period P=0.201080;

 Top: using slightly shorter period P=0.201037.



O–C diagram: constant periods [3]
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 O-C diagram showing a positive slope indicates that the 
real period is longer than the period used to construct the 
diagram; 

 A negative slope points to a real period that is shorter than 
the assumed one.



O–C diagram: changing periods
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 Changes of period could be described by any 
mathematical formula expressing P as a function of time.

 In most cases this relation is restricted to linear variations, 
cyclic variations, or a combination of both.



O–C diagram: changes linear with time
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 If ത𝑃 is the average period over the time interval, then 
(show it!)



CVs: Superoutbursts and superhumps

SSS J122221.7-311525
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Superhump Light Curve O-C diagram
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Superhumps: GW Lib



Detrending

 Trend in a time series is a slow, 
gradual change in some property of 
the series over the whole interval 
under investigation. 

 Trend is sometimes defined as a long 
term change in the mean, but can also 
refer to change in other statistical 
properties. 

 Detrending is the statistical or 
mathematical operation of removing 
trend from the series. 
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Detrending
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Detrending

 In studying and removing trend, it is important to 
understand the effect of detrending on the spectral 
properties of the time series. This effect can be summarized 
by the frequency response of the detrending function. 

 Many alternative methods are available for detrending: 
 A simple and widely used function of time is the least-squares-fit 

straight line, which assumes linear trend. 
 Other functions of time (e.g., quadratic) might be better depending 

on the type of data. 
 An alternative to fitting a curve to the entire time series (curve 

fitting) is to fit polynomials of time to different parts of the time 
series. 

 Sometimes the mathematical form of the trend function has physical 
basis. 
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Detrending

Original light curve
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Detrending

The least-squares-fit 
straight line to the light 
curve
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Detrending

Detrended light curve
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Detrending

 Identification of trend in a time series is subjective 
because trend cannot be unequivocally distinguished 
from low frequency fluctuations. What looks like trend in 
a short segment of a time series segment often proves to 
be a low-frequency fluctuation – perhaps part of a cycle –   
in the longer series. 

 We can view the entire observed time series as a segment 
of an unknown infinitely long series, and cannot be sure 
that an observed change in mean over that segment is 
not part of some low-frequency fluctuation imparted by a 
stationary process. 
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