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Time Domain Analysis: Convolution

» The convolution h(t) of two functions x(t) and y(t) is
400

Rt = x(6) * y(£) & f x(D)y(t — 1) dr

— 00
Basic properties are
commutativity: x *y =y *x
distributivity over addition: x # (y+z) =x *y + x*z

e Convolution theorem: The Fourier transform of the
convolution is the product of the individual Fourier

transforms: F (x *y)=F (x)-F (y)
e.g.: x()*y(t) = X(v)-Y(v)
F(x-y)=F(() *F(y)




Time Domain Analysis: Cross-correlation

» Correlation (Cross-correlation) is quite a similar
operation to convolution. The correlation Corr(x,y) of two
functions x(t) and y(t) is

+ 00

Corr(x,y) = (x xy)(1) & f x(t+ 1)y(t)dt

The correlation is a function of 7, which is called the lag.
Unlike for convolution, x x y #y *x x

» The cross-correlation theorem: The Fourier transform
of the cross-correlation of two functions is the product of
the individual Fourier transforms , where one of them has
been complex conjugated: x(t) » y(t) =< X() - Y*(v)




Time Domain Analysis: Autocorrelation

e The correlation of a function with itself is called its
autocorrelation.

e The related autocorrelation theorem is also known as the
Wiener-Khinchin theorem and states

x(D)* x() < X(v) X*(v) =1X|

e The Fourier transform of an autocorrelation
function is the power spectrum, or equivalently,
the autocorrelation is the inverse Fourier
transform of the power spectrum.




Time Series < DFT < Autocorr. & PSD




Time Domain Analysis: Autocorrelation

e The discrete
autocorrelation of a
sampled function x(t) is
just the discrete correlation
of the function with itself.

* Obviously this is always
symmetric with respect to
positive and negative lags.

n.s

e 100 random numbers with
a "hidden" sine function, -
and an autocorrelation of
the series on the bottom.
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» Cross correlation is a standard method of estimating
the degree to which two series are correlated.

» Consider two series x(71) and y(i) where 1=0,1,2...N-1,
with mx and my are the means of the corresponding
series. The discrete cross correlation r at the lag d is
defined as

2 [ alid - mxd * (yli-d) - my) |
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Cross Correlation

. . The cross correlation with a
Example: two time series x,y.

maximum delay of 4000.
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» Basic period analysis consists of finding a reliable
ephemeris of the main periodic variation and modelling
of the first order effects.

» The model is usually a linear ephemeris, i.e. a prediction
of eclipse times that assumes a constant period.

* O-C diagram is a powerful diagnostic tool, which
compares the actual timing of an event (e.g. the mid-
point of an eclipse or a pulsation cycle peak ) to the
moment we expect this event is occurred in a case of
constant periodicity.

o O-C stands for O[bserved] minus C[alculated]



» It might appear that a period is incorrect OR variable.

» The period variations are usually delicate. By building
O-C diagrams one can measure very subtle changes in the
period happening with the star.

» The horizontal axis of the an O-C diagram most often
represent time, usually expressed in days or cycles. The
vertical axis is the "O-C " part which can expressed in days
or a fraction of the period.

» Different phenomena, such as a constant but incorrect
period, period increasing or decreasing at a constant rate,
or sudden period changes but constant period thereafter,
have distinct patterns on the O-C diagrams.



If the period is constant and
if its value is known, then

T =T,+PE

where T, is the time of
maximum or minimum
light, T, is the zero epoch
and E is the number of
cycles elapsed since the zero
epoch.

O-C diagram: constant periods [1]
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T, and P are obtained through a
least-squares solution (like we did
in the very beginning of the course).
The ephemeris calculation yields

T :, = 2445157.8072 + 0.201043E




O-C diagram: constant periods [2]

* The ephemeris: T, ., = 2445157.8072 + 0.201043E
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o Middle set: based on the period P=0.201043;
o Lower graph: slightly longer period P=0.201080;
o Top: using slightly shorter period P=0.201037.




O-C diagram: constant periods [3]
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* O-C diagram showing a positive slope indicates that the
real period is longer than the period used to construct the
diagram;

» A negative slope points to a real period that is shorter than
the assumed one.




O-C diagram: changing periods

» Changes of period could be described by any
mathematical formula expressing P as a function of time.

T = To + f Pyt o Tp=Ty+ f P(E)dE

» In most cases this relation is restricted to linear variations,
cyclic variations, or a combination of both.




O-C diagram: changes linear with time

o If P is the average period over the time interval, then

(show it!)
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CVs: Superoutbursts and superhumps
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Superhumps: GW Lib

Superhump Light Curve O-C diagram
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e Trend in a time series is a slow,

gradual change in some property of
Detrending the series over the whole interval
under investigation.

» Trend is sometimes defined as a long
term change in the mean, but can also
refer to change in other statistical
properties.

» Detrending is the statistical or
mathematical operation of removing
trend from the series.




Detrending

Magnitude
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Detrending

 In studying and removing trend, it is important to
understand the effect of detrending on the spectral
Bro erties of the time series. This effect can be summarized
y the frequency response of the detrending function.

e Many alternative methods are available for detrending:

o A simple and widely used function of time is the least-squares-fit
straight line, which assumes linear trend.

o Other functions of time (e.g., quadratic) might be better depending
on the type of data.

o An alternative to fitting a curve to the entire time series (curve
fitting) is to fit polynomials of time to different parts of the time
series.

e 1S)0metimes the mathematical form of the trend function has physical
asis.




Detrending

Original light curve
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Detrending

The least-squares-fit
straight line to the light
curve
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Detrending

Detrended light curve
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 Identification of trend in a time series is subjective
because trend cannot be unequivocally distinguished
from low frequency fluctuations. What looks like trend in
a short segment of a time series segment often proves to
be a low-frequency fluctuation — perhaps part of a cycle —
in the longer series.

* We can view the entire observed time series as a segment
of an unknown infinitely long series, and cannot be sure
that an observed change in mean over that segment is
not part of some low-frequency fluctuation imparted by a
stationary process.
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