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Spectral Analysis with Unevenly-Spaced Data

» Gapped data representing a typical time series for a
ground-based single-site observational campaign:
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Spectral Analysis with Unevenly-Spaced Data

FOURIER ANALYSIS WITH UNEQUALLY-SPACED DATA*#

T.J. DEEMING
Dept, of Astronomy, The University of Texas at Austin, Tex., U.5.A.

{Received 22 March; in revised form 11 November, 1974)

Abstract. The general problems of Fourier and spectral analysis are discussed. A discrete Fourier
transform Fu(v) of a function f(1) is presented which (i) is defined for arbitrary data spacing; (ii) is
equal to the convolution of the true Fourier transform of f(r) with a spectral window, It is shown that
the * pathology * of the data spacing, including aliasing and related effects, is all contained in the spectral
window, and the properties of the spectral windows are examined for various kinds of data spacing.
The results are applicable to power spectrum analysis of stochastic functions as well as to ordinary
Fourier analysis of periodic or guasiperiodic functions.




Discrete Fourier transform

e Time series, x;, k=0, ..., N-1
» Evenly spaced data:

o The discrete Fourier transform decomposes the signal into N sine waves,
a;, j=-N/2+1, ..., N/2

N-1 N N
— i2mjk/N =41 .. —
a ;xke J 5 +1,.., 5

* Unevenly spaced data:

o The discrete Fourier transform decomposes the signal into M sine waves,
a, J=1, ..., M

N—-1
a. = z X eiva.tk =1 M
j —_ k J ] — 1, ...,
k=0 _
Mand v; are now arbitrary.




Fourier Analysis with Unequally-Spaced Data

» PSD is computed as the squared Fourier amplitudes:

P; = (Normalization)|a;|?

* Deeming:
the “pathology” of the data spacing, including
aliasing and related effects, is all contained in
the spectral window.




The variation of spectral window shape

Simulated Radial Velocity data.
Orbital period — 90 min (v=16.0 day!)

Radial Velocity (km s2)

150

=

o

o
T

al
o

6001

6002

6003 6004

HJD (+2450000)

6005

6006

6007

Radial Velocity (km s2)

150

=
o
o

al
o

o

|
wn
S

—-100

6002.90

Total duration — 7 nights.
Exposure time — 5 minutes

6002.95 6003.00 6003.05 6003.10
HJD (+2450000)




The variation of spectral window shape
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Radial Velocity (km s™)

Power

The variation of spectral window shape
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The variation of spectral window shape
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The variation of spectral window shape
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Fourier Analysis with Unequally-Spaced Data

 How to determine the
significance of peaks found
in power spectra of
unevenly-spaced data?

» How many independent
frequencies do we use? In
the plot to the right, 1000
values of v; are plotted
(M=1000), but most
frequencies are not
independent!

10
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Fourier Analysis with Unequally-Spaced Data

» Most frequencies are not
independent!

10 -
o Best solution: use Monte Carlo i !
data sets to estimate the I |
robablhtﬁ that the largest peak 8 - -

1s bigger than P ,. i ]

» Second-best rule of thumb: Each
peak has a width of dw=2m/T,
where T is the length of the entire
data set. Here T=365 days, so
dw=0.017. We then estlmate that
there should be approximately
(0.5-0.1)/0.017 = 23 independent
frequencies over this range.

025 03 035 04 045 05




Fourier Analysis with Unequally-Spaced Data

* BE VERY SKEPTICAL OF CLAIMS FOR
PERIODICITIES THAT COINCIDE WITH
NATURAL FREQUENCIES OF DETECTORS
OR OBSERVERS (eg. 1-day, 7-day, 1-year).




Fourier Analysis with Unequally-Spaced Data

* The dependence of the PSD on the data length, T, is
different for periodic, non-periodic, and stochastic

functions:
a;| oc T° non-periodic
a;|oc T periodic
a.| oc T2 stochastic




Lomb-Scargle Periodogram

» Lomb (1976) - Scargle (1982) Periodogram:

2

1 {Zx ) cos[2mv(t; — T)]} {Zm )sin[27v(t; — T)]}
5 N TR |
Z cos?[2mu(t; — 7)] Z sin®[2mv(t; — 7)]

1=1 1=1

Prs(v) =

o Good for general uneven sampling
o Equivalent to linear least-square fit to sin+cos
o Statistically robust




Lomb-Scargle Periodogram

» In this expression, the reference epoch 7 is chosen in such a way that:

N
Z cos2mv(t; — 1) sin[27v(t; — 7)] = 0,
i=1

* Or, equivalently

sin(4mvt;)

M-

i=1

tan(4dmvT) =

-

l
=

cos(4mvt;)

(5

» It looks complicated, but it’s basically the regular periodogram adapted
to handle unevenly spaced data. In the limit of equal spacing, it actually
reduces to the classical result.




Lomb-Scargle Periodogram

* One of the reasons to have introduced
the Lomb-Scargle periodogram is that its value does
not change when all time values t; are replaced by
(t; + T) because of the definition of .




Properties of the Lomb-Scargle periodogram

* The most important feature of the Lomb-Scargle
periodogram is the significance of the power at an
individual frequency:

Prob(P(v)>P4..)=exp(- Py.)

* You still have to worry about the number of
independent frequencies you test to account for trials
factors




Spectral Analysis with Unevenly-Spaced Data

Normalised Observable

The gapped data and its DFT (top) and LS
Spectral window periodogram (bottom)
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Advantages of non-uniform sampling

* Consider the following Lomb-
Scargle periodograms of an {=0.8
signal.

Top: sampling exactly once per

day at noon

Bottom: sampling once per day

at a random time within the 24-
hour period.

» Regular sampling gives strong
alias peak at f=0.2: in fact
Nyquist frequency is f<0.5, so

ou’d conclude there was really a

signal at f=0.2

* Random sampling gets rid of
alias peak! And it gives
sensitivity to higher frequencies -
since random times can be close
to each other, Nyquist cutoff is
not a hard limit anymore!
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In astronomy, it is often necessary to compare the
power spectra of two or more time series, e.g.:

X-ray binaries are often observed simultaneously in X-rays,
UV and optical wavelengths (and y-rays).

the Sun has been observed more or less routinely for many
years and in a variety of modes (sunspots, radio, UV, X-ray,
irradiance, etc.), so one may need to compare two or more
solar data sets.
One might also wish to estimate the significance of a
particular peak that shows up in two or more power

spectra.



Combined analysis of power spectra

» Assuming, that each power spectrum is distributed
exponentially (e.g., Lomb-Scargle periodogram),
Sturrock et al. (2005) proposed three such statistics,
that are useful for the combined study of two or more
time-series:

o Combined Power Statistic

o Minimum Power Statistic
o Joint Power Statistic

The paper is on the course web-page




Combined analysis of power spectra

e Combined Power Statistic

o If we wish to combine information from n independent power
spectra, the combination that would correspond to the chi-
square statistic is the sum of the powers, which we write as

Z=8S +S,++--+8

n.

o The following function of Z (“combined power statistic”) is
distributed exponentially:

2 (n —1)!

| |
GH(Z)=Z—ln(l+Z+ZZ+---+ Z”—l).




Minimum Power Statistic

We may wish to determine the frequency for which the
minimum power among two or more power spectra has the
maximum value. Let’s consider the following quantity, formed
from the independent variables x,, x., . . ., x,,, each of which is
distributed exponentially:

U(x, Xy 000 5,X,) = Min(x, x,, ..., X))

It can be shown that the following function of U (*“minimum
power statistic”) is distributed exponentially:

K (U) =nU



o Joint Power Statistic

Let’s now consider the need to compare spectra from two quite
different times series. If one of the time-series has very strong
peaks and the other has comparatively weak peaks, then
simply adding the powers would not be very revealing, since
the sum would be dominated by the stronger spectrum.

In this situation, it is more useful to form something
resembling a “correlation function" by forming the product of
the two powers. It proves convenient to work with the square
root of the product (the geometric mean):

X = (S,S,)"?



Combined analysis of power spectra

» Joint Power Statistic (cont.)
o The following function of X is distributed exponentially:

J, = —In (2X K, (2X))
where K1 is the Bessel function of the second kind.

o A good approximation to J, is found to be:

1.943 X2
T 0.6504+ X

Jaa




Combined analysis of power spectra

» Joint Power Statistic (cont.)

o Let’s now consider joint power statistics of higher orders, and
consider the following geometric mean of n powers:

X=(S,...S )/n

o There is no useful analytical functions of X that are distributed
exponentially, but there are very good approximations:

2.916X2 3.881 X2
= \ J4A = .
1.022+ X 1.269 + X

3A




Combined analysis of power spectra
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Combined analysis of power spectra

The combined
power statistic,
minimum power
statistic, and joint

power statistic, 7o |®
formed from the .
four synthetic 0
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DFT vs Lomb-Scargle

A critical comparison of the Lomb-Scargle and the classical
periodograms

arXiv:1807.01595

Roberto Vio,'* P. Andreani,>

! Chip Computers Consulting s.r.L., Viale Don L. Sturzo 82, S.Liberale di Marcon, 30020 Venice, Italy
2ESO, Karl Schwarzschild strasse 2, 85748 Garching, Germany

Accepted XXX. Received YYY: in original form ZZZ

ABSTRACT

The detection of signals hidden in noise is one of the oldest and common problems in as-
tronomy. Various solutions have been proposed in the past such as the parametric approaches
based on the least-squares fit of theoretical templates or the non-parametric techniques as the
phase-folding method. Most of them, however, are suited only for signals with specific time
evolution. For generic signals the spectral approach based on the periodogram is potentially
the most effective. In astronomy the main problem in working with the periodogram is that
often the sampling of the signals is irregular. This complicates its efficient computation (the
fast Fourier transform cannot be directly used) but overall the determination of its statistical
characteristics. The Lomb-Scargle periodogram (LSP) provides a solution to this last impor-
tant issue, but its main drawback is the assumption of a very specific model of the data which
is not correct for most of the practical applications. These issues are not always considered
in literature with theoretical and practical consequences of no easy solution. Moreover, apart
from pathological samplings, it is common believe that the LSP and the classical periodogram
(CP) usually provide almost identical results. In general, this is true but here it is shown that
there are situations where the LSP is less effective than the CP in the detection of signals in
noise. There are no compelling reasons, therefore, to use the LSP instead of the CP which
is directly connected to the correlation function of the observed signal with the sinusoidal
functions at the various frequencies of interest.

Key words: Methods: Statistical — Methods: Data Analysis — Methods: Numerical
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DFT vs Lomb-Scargle

A critical comparison of the Lomb-Scargle and the classical
periodograms by Vio & Andreani

arXiv:1807.01595

“... apart from pathological samplings, it is common believe that the LSP and
the classical periodogram (CP) usually provide almost identical results.

In general, this is true but here it is shown that there are situations where
the LSP is less effective than the CP in the detection of signals in noise. There
are no compelling reasons, therefore, to use the LSP instead of the CP ...”

However (it is my remark):

There are situations where the LSP is more effective than the CP.
Thus, there are no compelling reasons to use the DFT instead of the LSP.

Conclusion: both methods provide almost identical results.
However, the LSP is statistically robust.
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Dealing with Aliases. CLEAN algorithm.

1-day aliases
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Dealing with Aliases

o How to deal with aliases?
o Pre-whitening

o Cleaning (Clean algorithm)




Pre-whitening

o If the light curve contains more than one periodic modulations, and the
signal of interest with an unknown frequency is weak and hidden in
noise, then one can try to remove the strongest signal of known
frequency from the light curve:
fit the light curve with a sine-wave (and its harmonics) and subtract it.
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Pre-whitening

o If the light curve contains more e e e e e e
than one periodic modulations, NVALAY
and the signal of interest with -
an unknown frequency is weak
and hidden in noise, then one
can try to remove the strongest
signal of known frequency from
the light curve.
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Cleaning

THE ASTRONOMICAL JOURNAL VOLUME %3, NUMBER 4 APRIL 1987

TIME SERIES ANALYSIS WITH CLEAN. I. DERIVATION OF A SPECTRUM

DaAviD H. ROBERTS
Physics Department, Brandeis University, Waltham, Massachusetts 02254

JosEPH LEHAR AND JOHN W. DREHER

Physics Department, 26-315, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Received 7 October 1986; revised 25 November 1986

ABSTRACT

We present a method of time-series spectral analysis which is especially useful for unequally spaced
data. Based on a complex, one-dimensional version of the CLEAN deconvolution algorithm widely used
in two-dimensional image reconstruction, this technique provides a simple way to understand and
remove the artifacts introduced by missing data. We describe the method, give several examples, and
point out various analogies with the conventional use of CLEAN.




Clean Algorithm
» The premise of CLEAN is that
our data consist not only of the _

data amplitudes but also the

detailed sampling in time. 5(f) = spectral estimate

e We therefore know that the
true spectrum is convolved with S, (f) = | FT{W(t)}]2 = spectral window
a known window function. (calculated as the FT of sample times)

» The actual algorithm is based
on the fact that any function S (f)=3C A(f-f)
. _ _

can be represented as a sum or CLEANed Spectrum

integral over delta functions. Sum over CLEAN components
A(f) = restoration function that represents the

inherent frequency resolution

The restoring function is needed to fairly
represent the resolution imposed by Fourier
transform properties (uncertainty principle)




Clean Algorithm

Data vyield §(f) and Sw (f)=[W(f)?

S(f)
!

> Find largest amplitude in spectrum Si(fi)max @f; ¢ = iteration count

|
Scale and shift S (f) YiSw (f — fi)
1 !

Subtract and calculate residual spectrum) §f,.,(f) — §.;:+1(f) = §g(f) —vSw (f — fi)

|

Collect CLEAN components
— .
{’Yia fi: L= laNc}
Form CLEAN spectrum

N.
S.(f) = _Z vA(f — fi)

no

Residuals =
noise only?




Clean Algorithm
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Clean Algorithm

CLEAN components

Residual spectrum

Clean spectrum
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Clean Algorithm
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