
D I S C R E T E  F O U R I E R  T R A N S F O R M  

L O M B - S C A R G L E  P E R I O D O G R A M

Spectral Analysis with 
Unevenly-Spaced Data
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Spectral Analysis with Unevenly-Spaced Data

 Gapped data representing a typical time series for a 
ground-based single-site observational campaign:
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Spectral Analysis with Unevenly-Spaced Data
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Discrete Fourier transform

 Time series, xk,  k=0, ... , N-1
 Evenly spaced data:

 The discrete Fourier transform decomposes the signal into N sine waves, 
aj,  j= -N/2+1, ... , N/2

𝑎𝑗 = ෍

𝑘=0

𝑁−1

xk 𝑒𝑖2𝜋𝑗𝑘/𝑁 𝑗 = −
𝑁

2
+ 1,… ,

𝑁

2

 Unevenly spaced data:
 The discrete Fourier transform decomposes the signal into M sine waves, 

aj,  j= 1, ... , M

𝑎𝑗 = ෍

𝑘=0

𝑁−1

xk 𝑒𝑖2𝜋𝜈𝑗𝑡𝑘 𝑗 = 1,… ,𝑀

M and νj are now arbitrary.
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Fourier Analysis with Unequally-Spaced Data

 PSD is computed as the squared Fourier amplitudes:

𝑃𝑗 = (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 𝑎𝑗
2

 Deeming:
the “pathology” of the data spacing, including 
aliasing and related effects, is all contained in 
the spectral window.
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The variation of spectral window shape
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Simulated Radial Velocity data.
Orbital period – 90 min (ν=16.0 day-1)

Total duration – 7 nights.
Exposure time – 5 minutes



The variation of spectral window shape
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Observations – 7 nights w/o gaps

Exposure times – 5 min.
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The variation of spectral window shape
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Observations – 8 hours / nights

Exposure times – 5 min.
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The variation of spectral window shape
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Observations – 5 hours / nights
2 nights excluded
Exposure times – 4 and 5 min.
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The variation of spectral window shape
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Fourier Analysis with Unequally-Spaced Data

 How to determine the 
significance of peaks found 
in power spectra of 
unevenly-spaced data?

 How many independent 
frequencies do we use? In 
the plot to the right, 1000 
values of νj are plotted 
(M=1000), but most 
frequencies are not 
independent!
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Fourier Analysis with Unequally-Spaced Data

 Most frequencies are not 
independent!

 Best solution: use Monte Carlo 
data sets to estimate the 
probability that the largest peak 
is bigger than Pdet.

 Second-best rule of thumb: Each 
peak has a width of dω=2𝜋/T, 
where T is the length of the entire 
data set. Here T=365 days, so 
dω=0.017. We then estimate that 
there should be approximately 
(0.5-0.1)/0.017 = 23 independent 
frequencies over this range.
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Fourier Analysis with Unequally-Spaced Data

 BE VERY SKEPTICAL OF CLAIMS FOR 
PERIODICITIES THAT COINCIDE WITH 
NATURAL FREQUENCIES OF DETECTORS 
OR OBSERVERS (eg. 1-day, 7-day, 1-year).
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Fourier Analysis with Unequally-Spaced Data

 The dependence of the PSD on the data length, T, is 
different for periodic, non-periodic, and stochastic 
functions:

𝑎𝑗  T0 non-periodic

𝑎𝑗  T1 periodic

𝑎𝑗  T1/2 stochastic
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Lomb-Scargle Periodogram

 Lomb (1976) - Scargle (1982) Periodogram:

 Good for general uneven sampling

 Equivalent to linear least-square fit to sin+cos

 Statistically robust
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Lomb-Scargle Periodogram

 In this expression, the reference epoch τ is chosen in such a way that:

 Or, equivalently

 It looks complicated, but it’s basically the regular periodogram adapted 
to handle unevenly spaced data. In the limit of equal spacing, it actually 
reduces to the classical result.
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Lomb-Scargle Periodogram

 One of the reasons to have introduced 
the Lomb-Scargle periodogram is that its value does 
not change when all time values ti are replaced by  
( ti + T ) because of the definition of τ.
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Properties of the Lomb-Scargle periodogram

 The most important feature of the Lomb-Scargle 
periodogram is the significance of the power at an 
individual frequency:

Prob(P()>Pdet)=exp(- Pdet)

 You still have to worry about the number of 
independent frequencies you test to account for trials 
factors
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The gapped data and its 
Spectral window

DFT (top) and LS 
periodogram (bottom)

Spectral Analysis with Unevenly-Spaced Data
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Advantages of non-uniform sampling

 Consider the following Lomb-
Scargle periodograms of an f=0.8 
signal.
Top: sampling exactly once per 
day at noon
Bottom: sampling once per day 
at a random time within the 24-
hour period.

 Regular sampling gives strong 
alias peak at f=0.2: in fact 
Nyquist frequency is f<0.5, so 
you’d conclude there was really a 
signal at f=0.2

 Random sampling gets rid of 
alias peak! And it gives 
sensitivity to higher frequencies - 
since random times can be close 
to each other, Nyquist cutoff is 
not a hard limit anymore!
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Combined analysis of power spectra

 In astronomy, it is often necessary to compare the 
power spectra of two or more time series, e.g.:

 X-ray binaries are often observed simultaneously in X-rays, 
UV and optical wavelengths (and γ-rays).

 the Sun has been observed more or less routinely for many 
years and in a variety of modes (sunspots, radio, UV, X-ray, 
irradiance, etc.), so one may need to compare two or more 
solar data sets.

 One might also wish to estimate the significance of a 
particular peak that shows up in two or more power 
spectra.
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Combined analysis of power spectra

 Assuming, that each power spectrum is distributed 
exponentially (e.g., Lomb-Scargle periodogram), 
Sturrock et al. (2005) proposed three such statistics, 
that are useful for the combined study of two or more 
time-series:

 Combined Power Statistic 

 Minimum Power Statistic

 Joint Power Statistic

The paper is on the course web-page
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Combined analysis of power spectra

 Combined Power Statistic 

 If we wish to combine information from n independent power 
spectra, the combination that would correspond to the chi-
square statistic is the sum of the powers, which we write as

Z = S1 + S2 + · · · + Sn.

 The following function of Z (“combined power statistic”) is 
distributed exponentially:
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Combined analysis of power spectra

 Minimum Power Statistic
 We may wish to determine the frequency for which the 

minimum power among two or more power spectra has the 
maximum value. Let’s consider the following quantity, formed 
from the independent variables x1, x2, . . . , xn, each of which is 
distributed exponentially:

U(x1, x2, . . . , xn) = Min(x1, x2, . . . , xn)

 It can be shown that the following function of U (“minimum 
power statistic”) is distributed exponentially:

Kn(U) = nU
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Combined analysis of power spectra

 Joint Power Statistic

 Let’s now consider the need to compare spectra from two quite 
different times series. If one of the time-series has very strong 
peaks and the other has comparatively weak peaks, then 
simply adding the powers would not be very revealing, since 
the sum would be dominated by the stronger spectrum. 

 In this situation, it is more useful to form something 
resembling a “correlation function" by forming the product of 
the two powers. It proves convenient to work with the square 
root of the product (the geometric mean):

X = (S1S2)1/2

141



Combined analysis of power spectra

 Joint Power Statistic (cont.)

 The following function of X is distributed exponentially: 

J2 = −ln (2X K1(2X))

where K1 is the Bessel function of the second kind.

 A good approximation to J2 is found to be:
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Combined analysis of power spectra

 Joint Power Statistic (cont.)

 Let’s now consider joint power statistics of higher orders, and 
consider the following geometric mean of n powers: 

X = (S1 ... Sn)1/n

 There is no useful analytical functions of X that are distributed 
exponentially, but there are very good approximations:
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Combined analysis of power spectra
144

Four synthetic 
spectra, each with a 
signal of power 5 at 
ν = 20.



Combined analysis of power spectra
145

The combined 
power statistic, 
minimum power 
statistic, and joint 
power statistic, 
formed from the 
four synthetic 
spectra.



DFT vs Lomb-Scargle
146

arXiv:1807.01595

https://arxiv.org/abs/1807.01595


A critical comparison of the Lomb-Scargle and the classical 
periodograms  by  Vio & Andreani

“… apart from pathological samplings, it is common believe that the LSP and 
the classical periodogram (CP) usually provide almost identical results. 
In general, this is true but here it is shown that there are situations where 
the LSP is less effective than the CP in the detection of signals in noise. There 
are no compelling reasons, therefore, to use the LSP instead of the CP …”

However (it is my remark):

There are situations where the LSP is more effective than the CP. 
Thus, there are no compelling reasons to use the DFT instead of the LSP.

Conclusion: both methods provide almost identical results.
However, the LSP is statistically robust.

DFT vs Lomb-Scargle
147

arXiv:1807.01595

https://arxiv.org/abs/1807.01595


Dealing with Aliases. CLEAN algorithm.
148

1-day aliases

Spectral Window:

Power Spectrum:



Dealing with Aliases
149

 How to deal with aliases?

 Pre-whitening

 Cleaning (Clean algorithm)



Pre-whitening
150

 If the light curve contains more than one periodic modulations, and the 
signal of interest with an unknown frequency is weak and hidden in 
noise, then one can try to remove the strongest signal of known 
frequency from the light curve: 
fit the light curve with a sine-wave (and its harmonics) and subtract it.



Pre-whitening
151

 If the light curve contains more 
than one periodic modulations, 
and the signal of interest with 
an unknown frequency is weak 
and hidden in noise, then one 
can try to remove the strongest 
signal of known frequency from 
the light curve.



Cleaning
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Clean Algorithm
153

 The premise of CLEAN is that 
our data consist not only of the 
data amplitudes but also the 
detailed sampling in time.

 We therefore know that the 
true spectrum is convolved with 
a known window function.

 The actual algorithm is based 
on the fact that any function 
can be represented as a sum or 
integral over delta functions.

The restoring function is needed to fairly 
represent the resolution imposed by Fourier 
transform properties (uncertainty principle)



Clean Algorithm
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Clean Algorithm
155

a) Time-Series
b) The window function
c) The dirty spectrum



Clean Algorithm
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Clean Algorithm
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