
Noise Power Distribution

 Flux measurements are always accompanied by noise. 

 The light curve can be divided into its independent components: 
the deterministic signal S and the noise N. For an individual time 
bin, the total number of counts is composed of the sum of the 
signal and the noise, i.e., xk = sk + nk.

 Noise powers follow a chi-squared distribution with 2 dof:

 𝑃𝑗 ∝ 𝐴𝑗
2 + 𝐵𝑗

2, where 𝐴𝑗 = σ𝑘 𝑥𝑘 cos 𝜔𝑗𝑡𝑘 and 𝐵𝑗 = σ𝑘 𝑥𝑘 sin 𝜔𝑗𝑡𝑘;    𝑘 = 0, … , 𝑁 − 1

 So, each Aj and each Bj is a linear combination of the xk. Hence if the xk are 
normally distributed then Aj and Bj are as well → 𝑃𝑗 ∝ 𝜒2 with 2 dof by 

definition.

 If xk follow some other distribution (e.g. Poisson) then the central limit theorem 
ensures that Aj and Bj are still approximately normal (for large N) →
Pj are still approximately 𝜒2 with 2 dof.

 Exact expressions depend on the normalization of the Pj.
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Power Spectrum – Leahy Normalization

 We will adopt the Leahy et al. (1983) normalization:

𝑃𝑗 ≡
2

𝑁𝑡𝑜𝑡
𝑎𝑗

2 𝑗 = 0, … ,
𝑁

2
; 𝑤ℎ𝑒𝑟𝑒 𝑁𝑡𝑜𝑡 = 𝑁𝑝ℎ = ෍

𝑘
𝑥𝑘 = 𝑎0

 The Leahy normalization is chosen such that if the xk 
are Poisson distributed, then the Pj exactly follow the 
chi-squared distribution with 2 dof, χ2.

 For the Poisson process, the variance (square of the 
standard deviation) is equal to the number of counts.
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Properties of Leahy normalized PDS

 Variance in the real time series xk:

𝑉𝑎𝑟 𝑥𝑘 ≡ ෍
𝑘

(𝑥𝑘 − ഥ𝑥)2 = ෍
𝑘

𝑥𝑘
2 −

1
𝑁 ෍

𝑘
𝑥𝑘

2

=

=
1

𝑁
෍

𝑗

𝑎𝑗
2 −

1

𝑁
𝑎0

2 =
1

𝑁
෍

𝑗=− Τ𝑁 2
𝑗≠0

Τ𝑁 2−1

𝑎𝑗
2

Parseval’s theorem

𝑉𝑎𝑟 𝑥𝑘 =
𝑁𝑡𝑜𝑡

𝑁
෍

𝑗=1

Τ𝑁 2−1

𝑃𝑗 +
1

2
𝑃𝑁/2

variance is sum of powers!
The dimension of Pj is the same as xk and aj:   𝑃𝑗 = 𝑎𝑗 = 𝑥𝑘
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Leahy 
normalization

෍

𝑘=0

𝑁−1

xk
2 =

1

𝑁
෍

𝑗=−𝑁/2

𝑁/2−1

𝑎𝑗
2

𝑃𝑗 ≡
2

𝑁𝑡𝑜𝑡
𝑎𝑗

2 𝑗 = 0, … , 𝑁/2

𝑃𝑗 ∝ 𝑎𝑗
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Properties of Leahy normalized PDS

Often, the variance is expressed in terms of 
Fractional root-mean-square (rms) amplitude of a signal in a time series xk:

𝑟 ≡

1
𝑁 𝑉𝑎𝑟 𝑥𝑘

ҧ𝑥
=

𝑁

𝑁𝑡𝑜𝑡

𝑁𝑡𝑜𝑡

𝑁2
෍

𝑗=1

Τ𝑁 2−1

𝑃𝑗 +
1

2
𝑃𝑁/2 =

1

𝑁𝑡𝑜𝑡

෍

𝑗=1

Τ𝑁 2−1

𝑃𝑗 +
1

2
𝑃𝑁/2

r is dimensionless and often expressed in % (percentage rms variation).
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Properties of Leahy normalized PDS

 ”rms normalized” power density: q(νj)  TPj/Nph

physical unit of q(νj) is (rms/mean)2/Hz

 ”Source” fractional rms amplitude: If the xk are the sum of source and background: xk = 
bk + sk, then the rms amplitude as a fraction of just the sk:

𝑟𝑠 = 𝑟
𝐵+𝑆

𝑆
, 

where B and S are sums of the bk and sk, so B+S =σ𝑘 𝑥𝑘= Nph

 ”Source rms normalized” power density (“Miyamoto” normalization): 

qS  𝑞
𝐵+𝑆

𝑆

2
= 𝑇𝑃𝑗

𝐵+𝑆

𝑆2

the same unit as q: (rms/mean)2/Hz

Requires a model or a measurement of the background count rate
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Leahy normalization of the PDS of a sinusoid

88

The power spectrum of a sinusoid  A sin (2sinetk+φ):
Slide 80

Then, for x=0, 𝑃𝑗, 𝑠𝑖𝑛𝑒 =
1

2

𝑁2

𝑁𝑡𝑜𝑡
𝐴2

Leahy 
normalization

𝑃𝑗 ≡
2

𝑁𝑡𝑜𝑡
𝑎𝑗

2 𝑗 = 0, … , 𝑁/2



Properties of Leahy normalized PDS

 The Leahy normalization is chosen such that if the xk are Poisson 
distributed, then the Pj exactly follow the chi-squared distribution with 
2 dof, χ2.

 Properties of this distribution:

 The mean power is 2; 

 the standard deviation is 2!

 So, the power spectrum is very noisy. This does not improve with:

 longer observation — you just get more powers

 broader time bins — you just get a lower νNy
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Statistics of Power Spectra

 Flux measurements are always accompanied by noise. 

 The light curve can be divided into its independent components: 
the deterministic signal S and the noise N. For an individual time 
bin, the total number of counts is composed of the sum of the 
signal and the noise, i.e., xk = sk + nk.

 Examples of deterministic signals:

 a non-periodic deterministic variation, such as a nova light curve;

 A periodic variation, such as an eclipsing binary or a RR Lyr light curve;

 a multiply periodic variation, such as a spectroscopic triple system; 

 a modulated periodic variation where either the amplitude, frequency, or 
phase may vary with time - for example a pulsating system in a binary 
orbit.
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Statistics of Power Spectra

 'Noise' (= random aka stochastic processes) in the light curve 
produces peaks and broad components in the power spectrum.

 Examples of noise:

 Counting statistics noise (Poisson noise) -> white noise;

 Poisson noise modified by instrumental effects (e.g. dead-time) and 
other instrumental noise;

 Noise that is (stochastic) intrinsic source variability: QPO, band limited
noise, red noise, etc.

 All these can occur at the same time, possibly together with
deterministic signals.

 They can be the background against which you are trying to
detect something else

 Or they can be the signal you are trying to detect.
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Examples of power spectra: Periodic signal
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Examples of power spectra: QPO and red noise
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Various possible QPO signals
94

Various possible time-domain 
signals can underlay the QPO 
peak we see in frequency domain



Statistics of Power Spectra
95



Main types of signals

 Coherent pulsation

 Broad-band noise

 Broad peak (QPO)

 Peaked-noise
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Main types of signals

 Coherent pulsation

 Broad-band noise

 Broad peak (QPO)

 Peaked-noise
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Coherent Signals

 Much analysis involves “coherent” signals, i.e. 
periodic signals whose phase is constant over the 
relevant duration

 Q = ν/Δν >> 1000

 Examples:
 Pulses from rotating pulsars;

 Orbital modulation or eclipses;

 Precession periods.

101



Statistics of Power Spectra

 How to determine the significance of peaks found in power spectra? 
How big must a power be to constitute a significant excess over the 
noise?

 Let’s define ε as the probability that a noise fluctuation exceeds Pdet. 
The (1- ε) confidence detection level Pdet is a level that has a false alarm
probability of ε.  If there is just noise, Prob(Pj > Pdet) = ε.
We want ε to be small, e.g., ε =1% for 99% confidence.

 If Pj > Pdet then with 99% confidence there is something else than just 
noise, a source signal.
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Statistics of Power Spectra

 To determine Pdet, we need to know the noise power distribution.

 Warning: Because in High-Energy Astrophysics we are counting 
individual photons, the relevant statistics are Poisson, not Gaussian.

 The Leahy normalization is chosen such that if the xk are Poisson 
distributed, then the Pj exactly follow the chi-squared distribution with 
2 degrees of freedom, χ2. This is actually an exponential distribution:

𝜀 = 𝑃𝑟𝑜𝑏𝑠𝑖𝑛𝑔𝑙𝑒(𝑃𝑗 > 𝑃𝑑𝑒𝑡) = 𝑒− Τ𝑃
𝑑𝑒𝑡

2 𝑃𝑑𝑒𝑡 = −2 ln 𝜀

 Properties of this distribution: <Pnoise>= 2;  Var (Pnoise)=4
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Statistics of Power Spectra

 Examples: 

 ε=1% corresponds to Pdet=9.2;

 a power of 40 has a probability 
of e-40/2=210-9 of being noise.

 Since a large number of 
independent frequencies Ntrial 
are examined, the detection 
threshold has to be defined as 
that power that has an ε (small) 
probability to be exceeded in 
one frequency bin out of the 
Ntrial examined.

 One should divide ε by the 
number of trials.

𝜀 = 𝑁𝑡𝑟𝑖𝑎𝑙  𝑒− Τ𝑃
𝑑𝑒𝑡

2
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Statistics of Power Spectra

Important! The number of trial 
powers Ntrial over which the 
search has been carried out:

Ntrial = to the powers in the PSD if 
all the Fourier frequencies are 
considered;

Ntrial < than the powers in the PSD if 
a smaller range of frequencies  has 
been considered.

 Examples (cont.): Ntrial=10 000

 ε=1% corresponds to Pdet=27.6;

 a power of 40 has a probability 
of e-40/2=210-5 of being noise.

Still significant!!
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Rebinning and Averaging

 The power spectrum is very noisy. Smoothing methods:

 Average several power spectra of subsegments of the time series;

 Average adjacent bins in a power spectrum: rebinning;

 Windowing is also possible.

 Averaged power distribution:

 Individual Pj follow the chi-squared distribution with 2 dof.

 Additive property of χ2 distribution: sum of M powers is distributed as χ2
2M

 M – the number of the time series, W – Frequency rebinning factor:

<Pnoise>= 2; Var (Pnoise)=4/MW    (the number of trials decreases)

 Central limit theorem: 
for large MW the distribution of 𝑷𝑾𝑴 tends to normal 

(Gaussian), with mean 2 and standard deviation Τ𝟐 𝑴𝑾
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M=1,

Noisy PDS

M=10, 
A signal is clearly detected

Signal Detection
107



A note about rebinning

 Coherent peak: narrow power distribution – the 
longer the observation span, the better. The signal 
power to decrease by 1/MW.
Is it worth to average or rebin? No.

 The signal power decreases faster than the threshold power 
when averaging/rebinning;

 If the frequency varies (orbital motion) is even worse as you 
average signal with noise.

 Broad peak: broad power distribution - length of 
observation not crucial - rebinning helps. 
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Signal detection optimization

 The power spectrum of a 
sinusoidal signal 
xk=A cos (2sinetk+φ):

where x=(sine-j)T

 The highest power in the signal 
power spectrum will be 
obtained at the Fourier 
frequencyj closest to sine. 
Normalized to a power of 1 for 
sine = j (x = 0), this power 
varies between 0.405 and 1, 
with an average value of 0.773
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Signal detection optimization

 Implications: When 
searching for strictly coherent 
signals it is important to rely 
upon the original/maximum 
Fourier resolution (1/T).
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Signal detection optimization

 Similar reasoning shows that the 

signal power for a feature with 

finite width  drops 

proportionally to 1/MW when 

degrading the Fourier resolution. 

However, as long as feature width 

exceeds the frequency resolution, 

 > MW/T , the signal power in 

each Fourier frequency within the 

feature remains approx. constant.  

When  < MW/T  the signal 

power begins to drop.
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Signal detection optimization

 Implications: The search for 

QPOs is a three step interactive 

process. 

 Firstly, estimate (roughly) the 

feature width. 

 Secondly, run again a PSD by 

setting  the optimal value of 

MW equal to ~ T. Two or 

three iterations are likely 

needed. 

 Finally, use χ2 hypothesis 

testing to derive significance of 

the feature, its centroid and 

r.m.s.
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Measuring narrow features in PSD

 The QPO frequency varies with 

time (on short timescales).

 To minimize the pollution of the 
frequency drift to the measured QPO 
parameters, PDS must be integrated 
on the shortest possible timescales

 Useful tip: Produce a dynamical 
PSD

 Smooth it in time and frequency

 Restrict the frequency range to 
where you see the QPO
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Power spectrum plots

 Multiply the power spectrum by the 

frequency

 Obtain a νPν representation

 Useful to see where the power per 

decade peaks

 Characteristic frequencies are peaks 
in νPν
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Periodic Non-sinusoidal Signals

 Power for Periodic 
Nonsinusoidal Signals is 
spread over harmonics of 
the modulation 
frequency:
Confidence lower.
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Summary: Detecting something in a power spectrum

The process of detecting something in a power spectrum 
against the background of noise has several steps:

 knowledge of the probability distribution of the noise powers;

 knowledge of the interaction between the noise and the signal 
powers (determination of the signal upper limit);

 The detection level: Number of trials (frequencies and/or 
sample);

 Specific issues related to the intrinsic source variability (non 
Poissonian noise);

 Specific issues related to a given instrument/satellite (spurious 
signals – spacecraft orbit, wobble motion, large data gaps, etc.).
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