
Noise Power Distribution

 Flux measurements are always accompanied by noise. 

 The light curve can be divided into its independent components: 
the deterministic signal S and the noise N. For an individual time 
bin, the total number of counts is composed of the sum of the 
signal and the noise, i.e., xk = sk + nk.

 Noise powers follow a chi-squared distribution with 2 dof:

 𝑃𝑗 ∝ 𝐴𝑗
2 + 𝐵𝑗

2, where 𝐴𝑗 = σ𝑘 𝑥𝑘 cos 𝜔𝑗𝑡𝑘 and 𝐵𝑗 = σ𝑘 𝑥𝑘 sin 𝜔𝑗𝑡𝑘;    𝑘 = 0, … , 𝑁 − 1

 So, each Aj and each Bj is a linear combination of the xk. Hence if the xk are 
normally distributed then Aj and Bj are as well → 𝑃𝑗 ∝ 𝜒2 with 2 dof by 

definition.

 If xk follow some other distribution (e.g. Poisson) then the central limit theorem 
ensures that Aj and Bj are still approximately normal (for large N) →
Pj are still approximately 𝜒2 with 2 dof.

 Exact expressions depend on the normalization of the Pj.
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Power Spectrum – Leahy Normalization

 We will adopt the Leahy et al. (1983) normalization:

𝑃𝑗 ≡
2

𝑁𝑡𝑜𝑡
𝑎𝑗

2 𝑗 = 0, … ,
𝑁

2
; 𝑤ℎ𝑒𝑟𝑒 𝑁𝑡𝑜𝑡 = 𝑁𝑝ℎ = 

𝑘
𝑥𝑘 = 𝑎0

 The Leahy normalization is chosen such that if the xk 
are Poisson distributed, then the Pj exactly follow the 
chi-squared distribution with 2 dof, χ2.

 For the Poisson process, the variance (square of the 
standard deviation) is equal to the number of counts.

84



Properties of Leahy normalized PDS

 Variance in the real time series xk:

𝑉𝑎𝑟 𝑥𝑘 ≡ 
𝑘

(𝑥𝑘 − ഥ𝑥)2 = 
𝑘

𝑥𝑘
2 −

1
𝑁 

𝑘
𝑥𝑘

2

=

=
1

𝑁


𝑗

𝑎𝑗
2 −

1

𝑁
𝑎0

2 =
1

𝑁


𝑗=− Τ𝑁 2
𝑗≠0

Τ𝑁 2−1

𝑎𝑗
2

Parseval’s theorem

𝑉𝑎𝑟 𝑥𝑘 =
𝑁𝑡𝑜𝑡

𝑁


𝑗=1

Τ𝑁 2−1

𝑃𝑗 +
1

2
𝑃𝑁/2

variance is sum of powers!
The dimension of Pj is the same as xk and aj:   𝑃𝑗 = 𝑎𝑗 = 𝑥𝑘

85

Leahy 
normalization



𝑘=0

𝑁−1

xk
2 =

1

𝑁


𝑗=−𝑁/2

𝑁/2−1

𝑎𝑗
2

𝑃𝑗 ≡
2

𝑁𝑡𝑜𝑡
𝑎𝑗

2 𝑗 = 0, … , 𝑁/2

𝑃𝑗 ∝ 𝑎𝑗
2/𝑎0



Properties of Leahy normalized PDS

Often, the variance is expressed in terms of 
Fractional root-mean-square (rms) amplitude of a signal in a time series xk:

𝑟 ≡

1
𝑁 𝑉𝑎𝑟 𝑥𝑘

ҧ𝑥
=

𝑁

𝑁𝑡𝑜𝑡

𝑁𝑡𝑜𝑡

𝑁2


𝑗=1

Τ𝑁 2−1

𝑃𝑗 +
1

2
𝑃𝑁/2 =

1

𝑁𝑡𝑜𝑡



𝑗=1

Τ𝑁 2−1

𝑃𝑗 +
1

2
𝑃𝑁/2

r is dimensionless and often expressed in % (percentage rms variation).
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Properties of Leahy normalized PDS

 ”rms normalized” power density: q(νj)  TPj/Nph

physical unit of q(νj) is (rms/mean)2/Hz

 ”Source” fractional rms amplitude: If the xk are the sum of source and background: xk = 
bk + sk, then the rms amplitude as a fraction of just the sk:

𝑟𝑠 = 𝑟
𝐵+𝑆

𝑆
, 

where B and S are sums of the bk and sk, so B+S =σ𝑘 𝑥𝑘= Nph

 ”Source rms normalized” power density (“Miyamoto” normalization): 

qS  𝑞
𝐵+𝑆

𝑆

2
= 𝑇𝑃𝑗

𝐵+𝑆

𝑆2

the same unit as q: (rms/mean)2/Hz

Requires a model or a measurement of the background count rate

87



Leahy normalization of the PDS of a sinusoid

88

The power spectrum of a sinusoid  A sin (2sinetk+φ):
Slide 80

Then, for x=0, 𝑃𝑗, 𝑠𝑖𝑛𝑒 =
1

2

𝑁2

𝑁𝑡𝑜𝑡
𝐴2

Leahy 
normalization

𝑃𝑗 ≡
2

𝑁𝑡𝑜𝑡
𝑎𝑗

2 𝑗 = 0, … , 𝑁/2



Properties of Leahy normalized PDS

 The Leahy normalization is chosen such that if the xk are Poisson 
distributed, then the Pj exactly follow the chi-squared distribution with 
2 dof, χ2.

 Properties of this distribution:

 The mean power is 2; 

 the standard deviation is 2!

 So, the power spectrum is very noisy. This does not improve with:

 longer observation — you just get more powers

 broader time bins — you just get a lower νNy
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Statistics of Power Spectra

 Flux measurements are always accompanied by noise. 

 The light curve can be divided into its independent components: 
the deterministic signal S and the noise N. For an individual time 
bin, the total number of counts is composed of the sum of the 
signal and the noise, i.e., xk = sk + nk.

 Examples of deterministic signals:

 a non-periodic deterministic variation, such as a nova light curve;

 A periodic variation, such as an eclipsing binary or a RR Lyr light curve;

 a multiply periodic variation, such as a spectroscopic triple system; 

 a modulated periodic variation where either the amplitude, frequency, or 
phase may vary with time - for example a pulsating system in a binary 
orbit.

90



Statistics of Power Spectra

 'Noise' (= random aka stochastic processes) in the light curve 
produces peaks and broad components in the power spectrum.

 Examples of noise:

 Counting statistics noise (Poisson noise) -> white noise;

 Poisson noise modified by instrumental effects (e.g. dead-time) and 
other instrumental noise;

 Noise that is (stochastic) intrinsic source variability: QPO, band limited
noise, red noise, etc.

 All these can occur at the same time, possibly together with
deterministic signals.

 They can be the background against which you are trying to
detect something else

 Or they can be the signal you are trying to detect.
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Examples of power spectra: Periodic signal
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Examples of power spectra: QPO and red noise
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Various possible QPO signals
94

Various possible time-domain 
signals can underlay the QPO 
peak we see in frequency domain



Statistics of Power Spectra
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Main types of signals

 Coherent pulsation

 Broad-band noise

 Broad peak (QPO)

 Peaked-noise
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Main types of signals
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Main types of signals

 Coherent pulsation

 Broad-band noise

 Broad peak (QPO)

 Peaked-noise
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Coherent Signals

 Much analysis involves “coherent” signals, i.e. 
periodic signals whose phase is constant over the 
relevant duration

 Q = ν/Δν >> 1000

 Examples:
 Pulses from rotating pulsars;

 Orbital modulation or eclipses;

 Precession periods.
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Statistics of Power Spectra

 How to determine the significance of peaks found in power spectra? 
How big must a power be to constitute a significant excess over the 
noise?

 Let’s define ε as the probability that a noise fluctuation exceeds Pdet. 
The (1- ε) confidence detection level Pdet is a level that has a false alarm
probability of ε.  If there is just noise, Prob(Pj > Pdet) = ε.
We want ε to be small, e.g., ε =1% for 99% confidence.

 If Pj > Pdet then with 99% confidence there is something else than just 
noise, a source signal.
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Statistics of Power Spectra

 To determine Pdet, we need to know the noise power distribution.

 Warning: Because in High-Energy Astrophysics we are counting 
individual photons, the relevant statistics are Poisson, not Gaussian.

 The Leahy normalization is chosen such that if the xk are Poisson 
distributed, then the Pj exactly follow the chi-squared distribution with 
2 degrees of freedom, χ2. This is actually an exponential distribution:

𝜀 = 𝑃𝑟𝑜𝑏𝑠𝑖𝑛𝑔𝑙𝑒(𝑃𝑗 > 𝑃𝑑𝑒𝑡) = 𝑒− Τ𝑃
𝑑𝑒𝑡

2 𝑃𝑑𝑒𝑡 = −2 ln 𝜀

 Properties of this distribution: <Pnoise>= 2;  Var (Pnoise)=4
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Statistics of Power Spectra

 Examples: 

 ε=1% corresponds to Pdet=9.2;

 a power of 40 has a probability 
of e-40/2=210-9 of being noise.

 Since a large number of 
independent frequencies Ntrial 
are examined, the detection 
threshold has to be defined as 
that power that has an ε (small) 
probability to be exceeded in 
one frequency bin out of the 
Ntrial examined.

 One should divide ε by the 
number of trials.

𝜀 = 𝑁𝑡𝑟𝑖𝑎𝑙  𝑒− Τ𝑃
𝑑𝑒𝑡

2
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Statistics of Power Spectra

Important! The number of trial 
powers Ntrial over which the 
search has been carried out:

Ntrial = to the powers in the PSD if 
all the Fourier frequencies are 
considered;

Ntrial < than the powers in the PSD if 
a smaller range of frequencies  has 
been considered.

 Examples (cont.): Ntrial=10 000

 ε=1% corresponds to Pdet=27.6;

 a power of 40 has a probability 
of e-40/2=210-5 of being noise.

Still significant!!
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Rebinning and Averaging

 The power spectrum is very noisy. Smoothing methods:

 Average several power spectra of subsegments of the time series;

 Average adjacent bins in a power spectrum: rebinning;

 Windowing is also possible.

 Averaged power distribution:

 Individual Pj follow the chi-squared distribution with 2 dof.

 Additive property of χ2 distribution: sum of M powers is distributed as χ2
2M

 M – the number of the time series, W – Frequency rebinning factor:

<Pnoise>= 2; Var (Pnoise)=4/MW    (the number of trials decreases)

 Central limit theorem: 
for large MW the distribution of 𝑷𝑾𝑴 tends to normal 

(Gaussian), with mean 2 and standard deviation Τ𝟐 𝑴𝑾

106



M=1,

Noisy PDS

M=10, 
A signal is clearly detected

Signal Detection
107



A note about rebinning

 Coherent peak: narrow power distribution – the 
longer the observation span, the better. The signal 
power to decrease by 1/MW.
Is it worth to average or rebin? No.

 The signal power decreases faster than the threshold power 
when averaging/rebinning;

 If the frequency varies (orbital motion) is even worse as you 
average signal with noise.

 Broad peak: broad power distribution - length of 
observation not crucial - rebinning helps. 
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Signal detection optimization

 The power spectrum of a 
sinusoidal signal 
xk=A cos (2sinetk+φ):

where x=(sine-j)T

 The highest power in the signal 
power spectrum will be 
obtained at the Fourier 
frequencyj closest to sine. 
Normalized to a power of 1 for 
sine = j (x = 0), this power 
varies between 0.405 and 1, 
with an average value of 0.773
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Signal detection optimization

 Implications: When 
searching for strictly coherent 
signals it is important to rely 
upon the original/maximum 
Fourier resolution (1/T).
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Signal detection optimization

 Similar reasoning shows that the 

signal power for a feature with 

finite width  drops 

proportionally to 1/MW when 

degrading the Fourier resolution. 

However, as long as feature width 

exceeds the frequency resolution, 

 > MW/T , the signal power in 

each Fourier frequency within the 

feature remains approx. constant.  

When  < MW/T  the signal 

power begins to drop.
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Signal detection optimization

 Implications: The search for 

QPOs is a three step interactive 

process. 

 Firstly, estimate (roughly) the 

feature width. 

 Secondly, run again a PSD by 

setting  the optimal value of 

MW equal to ~ T. Two or 

three iterations are likely 

needed. 

 Finally, use χ2 hypothesis 

testing to derive significance of 

the feature, its centroid and 

r.m.s.
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Measuring narrow features in PSD

 The QPO frequency varies with 

time (on short timescales).

 To minimize the pollution of the 
frequency drift to the measured QPO 
parameters, PDS must be integrated 
on the shortest possible timescales

 Useful tip: Produce a dynamical 
PSD

 Smooth it in time and frequency

 Restrict the frequency range to 
where you see the QPO
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Power spectrum plots

 Multiply the power spectrum by the 

frequency

 Obtain a νPν representation

 Useful to see where the power per 

decade peaks

 Characteristic frequencies are peaks 
in νPν
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Periodic Non-sinusoidal Signals

 Power for Periodic 
Nonsinusoidal Signals is 
spread over harmonics of 
the modulation 
frequency:
Confidence lower.
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Summary: Detecting something in a power spectrum

The process of detecting something in a power spectrum 
against the background of noise has several steps:

 knowledge of the probability distribution of the noise powers;

 knowledge of the interaction between the noise and the signal 
powers (determination of the signal upper limit);

 The detection level: Number of trials (frequencies and/or 
sample);

 Specific issues related to the intrinsic source variability (non 
Poissonian noise);

 Specific issues related to a given instrument/satellite (spurious 
signals – spacecraft orbit, wobble motion, large data gaps, etc.).
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