Noise Power Distribution

* Flux measurements are always accompanied by noise.

» The light curve can be divided into its independent components:
the deterministic signal S and the noise N. For an individual time
bin, the total number of counts is composed of the sum of the
signal and the noise, i.e., x; = s;. + 1,

e Noise powers follow a chi-squared distribution with 2 dof:
O P; < A7 + B}, where A; = ¥, x; cos w;ty and B; = ¥y x sinwjty; k=0,..,N —1
o So, each A; and each B; is a linear combination of the x,. Hence if the x; are

normally distributed then A; and B; are as well > P; « x? with 2 dof by
definition.

o If x; follow some other distribution (e.g. Poisson) then the central limit theorem
ensures that A; and B; are still approximately normal (for large N) -
P; are still approximately y* with 2 dof.

o Exact expressions depend on the normalization of the P,.




» We will adopt the Leahy et al. (1983) normalization:
, N
la;|> j=0, S where Ny, = Ny, = zkxk = a,

» The Leahy normalization is chosen such that if the x;
are Poisson distributed, then the P; exactly follow the
chi-squared distribution with 2 dof, y2.

» For the Poisson process, the variance (square of the
standard deviation) is equal to the number of counts.



Properties of Leahy normalized PDS

e Variance in the real time series x;:
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Properties of Leahy normalized PDS

Often, the variance is expressed in terms of
Fractional root-mean-square (rms) amplitude of a signal in a time series x;.
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r is dimensionless and often expressed in % (percentage rms variation).




Properties of Leahy normalized PDS

 “rms normalized” power density: q(v;) = TP;/N,,
physical unit of g(v;) is (rms/mean)?/Hz

» ”Source” fractional rms amplitude: If the x; are the sum of source and background: x; =
b, + s;, then the rms amplitude as a fraction of just the s;:

_ 'B+s
S r S ’
where B and S are sums of the b and s;, so B+S =}, x;,= N,
e PN SN T
ST
S
B
* ”Source rms normalized” power density (“Miyamoto” normalization):
2
B+S B+S
qSEq( S ) =Th s2

the same unit as g: (rms/mean)?/Hz

Requires a model or a measurement of the background count rate




Leahy normalization of the PDS of a sinusoid

The power spectrum of a sinusoid A sin (27zv.t.t9):
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The Leahy normalization is chosen such that if the x; are Poisson

distributed, then the P; exactly follow the chi-squared distribution with
2 dof, y2.

Properties of this distribution:
The mean power is 2;
the standard deviation is 2!

So, the power spectrum is very noisy. This does not improve with:
longer observation — you just get more powers
broader time bins — you just get a lower vy,
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Statistics of Power Spectra

» Flux measurements are always accompanied by noise.

» The light curve can be divided into its independent components:
the deterministic signal S and the noise N. For an individual time
bin, the total number of counts is composed of the sum of the
signal and the noise, i.e., x;. = s;. + n,..

» Examples of deterministic signals:
o a non-periodic deterministic variation, such as a nova light curve;
o A periodic variation, such as an eclipsing binary or a RR Lyr light curve;
o a multiply periodic variation, such as a spectroscopic triple system;

o a modulated periodic variation where either the amplitude, frequency, or

phase may vary with time - for example a pulsating system in a binary
orbit.




Statistics of Power Spectra

» 'Noise' (= random aka stochastic processes) in the light curve
produces peaks and broad components in the power spectrum.

» Examples of noise:
o Counting statistics noise (Poisson noise) -> white noise;

o Poisson noise modified by instrumental effects (e.g. dead-time) and
other instrumental noise;

o Noise that is (stochastic) intrinsic source variability: QPO, band limited
noise, red noise, etc.

o All these can occur at the same time, possibly together with
deterministic signals.

* They can be the background against which you are trying to
detect something else

* Or they can be the signal you are trying to detect.




Examples of power spectra: Periodic signal
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Examples of power spectra: QPO and red noise
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Various possible QPO signals

Various possible time-domain
signals can underlay the QPO
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Statistics of Power Spectra
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Main types of signals

e Coherent pulsation ..

e Broad-band noise .
* Broad peak (QPO) .
e Peaked-noise




Main types of signals

e Coherent pulsation
» Broad-band noise : ]
» Broad peak (QPO) -’*
» Peaked-noise : :

! xf =
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Main types of signals

e Broad-band noise -
» Broad peak (QPO)
» Peaked-noise

* Coherent pulsation




Main types of signals

» Coherent pulsation

1500 —

e Broad-band noise
e Broad peak (QPO)

o Peaked-noise
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Main types of signals

» Coherent pulsation
e Broad-band noise

» Broad peak (QPO)
e Peaked-noise
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Coherent Signals

* Much analysis involves “coherent” signals, i.e.
periodic signals whose phase is constant over the
relevant duration

o Q=v/Av >> 1000

» Examples:

o Pulses from rotating pulsars;
o Orbital modulation or eclipses;
o Precession periods.




» How to determine the significance of peaks found in power spectra?
How big must a power be to constitute a significant excess over the

noise?

* Let’s define ¢ as the probability that a noise fluctuation exceeds P,,,.
The (1- ¢) confidence detection level P, is a level that has a false alarm
probability of . If there is just noise, Prob(P; > P,,,) = <.

We want ¢ to be small, e.g., ¢ =1% for 99% confidence.

e If P;> P, then with 99% confidence there is something else than just

noise, a source signal.
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Statistics of Power Spectra

» To determine P,,,, we need to know the noise power distribution.

 Warning: Because in High-Energy Astrophysics we are counting
individual photons, the relevant statistics are Poisson, not Gaussian.

» The Leahy normalization is chosen such that if the x; are Poisson
distributed, then the P; exactly follow the chi-squared distribution with
2 degrees of freedom, y2. This is actually an exponential distribution:

€ = Probsingie(P; > Pget) = e Paer/2 ———Py, = —2Ine

» Properties of this distribution: <P__...>=2; Var (P, ..)=4

noise




Statistics of Power Spectra

» Examples:
o &=1% corresponds to P;,,=9.2;

o apower of 40 has a probability
of e4°/2=2x1079 of being noise.

 Since a large number of
independent frequencies N,
are examined, the detection
threshold has to be defined as
that power that has an € (small)
probability to be exceeded in
one frequency bin out of the
N,,;,, examined.

o One should divide ¢ by the
number of trials.

€ = Nrial e Pa/2




Statistics of Power Spectra

Important! The number of trial

powers N, .., over which the 1.0 ]
search has been carried out: _ :
N,,;, = to the powers in the PSD if e | i
all the Fourier frequencies are !
considered; | | 08 i
N,,;, < than the powers in the PSD if A :
a smaller range of frequencies has 3 .
been considered. < 0.4 y

» Examples (cont.): N,;.,=10 000

trial ™
o &=1% corresponds to P,;,=27.6; L ;

o a power of 40 has a probability
of e49/2=2x105 of being noise.

Still significant!!




Rebinning and Averaging

» The power spectrum is very noisy. Smoothing methods:
o Average several power spectra of subsegments of the time series;

o Average adjacent bins in a power spectrum: rebinning;
o Windowing is also possible.
» Averaged power distribution:
o Individual P; follow the chi-squared distribution with 2 dof.
o Additive property of y2 distribution: sum of M powers is distributed as y2,,,
e M - the number of the time series, W — Frequency rebinning factor:
<P ,ie>=2; Var (P, ;..)=4/MW (the number of trials decreases)

e Central limit theorem:
for large MW the distribution of Py, tends to normal

(Gaussian), with mean 2 and standard deviation 2/VMW




Signal Detection
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Noisy PDS A signal is clearly detected
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A note about rebinning

e Coherent peak: narrow power distribution — the
longer the observation span, the better. The signal
power to decrease by 1/MW.

Is it worth to average or rebin? No.

o The signal power decreases faster than the threshold power
when averaging/rebinning;

o If the frequency varies (orbital motion) is even worse as you
average signal with noise.

» Broad peak: broad power distribution - length of
observation not crucial - rebinning helps.




Signal detection optimization

» The power spectrum of a
sinusoidal signal
x;.=A cos (2rvgntto):
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» The highest power in the signal
power spectrum will be
obtained at the Fourier
frequencyv; closest to . jL
Normalized to a power of 1 for -
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Signal detection optimization

o Implications: When

searching for strictly coherent § s
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Signal detection optimization

o Similar reasoning shows that the
signal power for a feature with
finite width Av drops
proportionally to 1/MW when
degrading the Fourier resolution.
However, as long as feature width
exceeds the frequency resolution,
Av > MW/T , the signal power in
each Fourier frequency within the
feature remains approx. constant.
When Av < MW/T the signal
power begins to drop.




Signal detection optimization

Implications: The search for
QPOs is a three step interactive
process.

Firstly, estimate (roughly) the
feature width.

Secondly, run again a PSD by
setting the optimal value of
MW equal to ~Av T. Two or
three iterations are likely
needed.

Finally, use y2 hypothesis
testing to derive significance of
the feature, its centroid and
r.m.s.




Measuring narrow features in PSD

» The QPO frequency varies with
time (on short timescales).

* To minimize the pollution of the
frequency drift to the measured QPO
parameters, PDS must be integrated
on the shortest possible timescales

» Useful tip: Produce a dynamical
PSD
Smooth it in time and frequency

Restrict the frequency range to
where you see the QPO

900

Frequency (Hz)

750

700

0

1000

2000 3000
Time aofter TO (seconds)

4000

2.0 2.2 2.4 2.6
Power




Power spectrum plots

e Multiply the power spectrum by the
frequency

e Obtain a vP, representation

» Useful to see where the power per

(=]

decade peaks g 1075
(O
£ 04t
» Characteristic frequencies are peaks Y w09
: . - . J 8 ’ a J
n VPV 0.001 0.010 0.100 1.000 10.000 lo0.001 0.010 0.100 1.000 10.0¢

Frequency (Hz) Frequency (Hz)




Periodic Non-sinusoidal Signals

o Power for Periodic
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The process of detecting something in a power spectrum
against the background of noise has several steps:

» knowledge of the probability distribution of the noise powers;

» knowledge of the interaction between the noise and the signal
powers (determination of the signal upper limit);

» The detection level: Number of trials (frequencies and/or
sample);

e Specific issues related to the intrinsic source variability (non
Poissonian noise);

» Specific issues related to a given instrument/satellite (spurious
signals — spacecraft orbit, wobble motion, large data gaps, etc.).
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