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Practical Photometry: S/N (2)
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Physical limitations on the precision of photometric 

measurements (1)

From lecture 9 (slides 353+):

 To calculate the Output Signal-To-Noise Ratio of an observation we need to know the 
signal, and all sources of noise. These are:

 Photon noise (shot noise) from the signal;

 Photon noise from the sky background under the signal;

 Photon noise from the sky background measurement to be subtracted off; 

 Readout noise from all sources;

 Fixed pattern noise;

 Bias noise;

 Dark current noise.
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 Detective quantum efficiency= DQE =[
𝑆𝑁𝑅𝑜𝑢𝑡

𝑆𝑁𝑅𝑖𝑛

]2

 We observe a star on a CCD detector, and process 

the data in the simplest way possible. 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐹𝑟𝑎𝑚𝑒 =
𝑂𝑏𝑗𝑒𝑐𝑡 𝐹𝑟𝑎𝑚𝑒 −𝐵𝑖𝑎𝑠 𝐹𝑟𝑎𝑚𝑒

𝐹𝑙𝑎𝑡 𝐹𝑟𝑎𝑚𝑒 −𝐵𝑖𝑎𝑠 𝐹𝑟𝑎𝑚𝑒
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Physical limitations on the precision of photometric 

measurements (2)



Physical limitations on the precision of photometric 

measurements (3)

 An area centred on the star is 
defined to be the object area, 
and is large enough to contain 
all of the photons from that star.

 An equal area some distance 
away, which is found to be free 
of stars, is defined as the sky 
background area, and the sky 
background is measured from 
that. 

The upper is good, the bottom is bad
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Aperture photometry (1)

 There are a number of parameters we need to take into 

account to calculate the signal which reaches the detector:

 t – exposure time

 D – diameter of the telescope

 Ssky [photons / (cm2 arcsec2 second)] – brightness of the sky

 η – quantum efficiency of a detector (QE)

 φ* [photons / (cm2 second Å)] – the source flux to be measured

 Star is observed in a circular aperture of area β square arcseconds which 
covers npix pixels

 Sky background is determined from a circular aperture of the same size

 Readout noise is σR electrons

 We observe a star of magnitude V in the V filter
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Signal calculation (1)

 We start from the number of photons incident upon the top of the 
atmosphere of the Earth from this star:

N*=φ* ∆λ A photons/second

incident upon the top of the atmosphere in photometric (clear) conditions

   Δλ is the filter passband in Å
φ* is the flux from a star in photons s−1cm−2 Å−1

   A is the telescope collecting area in centimetres2
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Signal calculation (2)

 That’s at the top of the atmosphere. There are a number of efficiency 

factors we need to multiply by to calculate the signal which reaches 

the detector:

 Atmospheric transmission εatm  (~0.88 for a star at the zenith, in the V filter). 

 Telescope reflection efficiency εtel 

(~0.92 per mirror = 0.846 for a Cassegrain telescope)

 Filter transmission εfilt  (~0.85 for a broadband filter)

 CCD Responsive Quantum Efficiency η (~0.75)

 Cryostat entrance window efficiency εwin (~0.95) 
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Signal calculation (3)

 There is also a geometric efficiency factor as part of the aperture of 

the telescope is blocked by the secondary mirror.

   For a D metre aperture telescope with a d metre secondary mirror:

𝜀geom =
𝜋𝐷2−𝜋𝑑2

𝜋𝐷2  =
𝐷2−𝑑2

𝐷2

For example, if D=2.0m and d=0.6m, then 𝜀 = 0.91 
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Signal calculation (4)

 For a star the number of photons which is detected is given by:

Nstar = η εatm εtel εfilt εwin εgeom φ* Δλ A t

   t is the exposure time in seconds, 

Δλ = 870 Å for the V band.

   For example, for a star of magnitude V=23 on a 2 metre telescope with 

the efficiencies we have quoted:

Nstar = 2.5 t
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Signal calculation (5)

 In the absence of sky background and readout noise it would be simple, 

we would integrate for 1000 seconds, detect 2500 photons, and have a 

signal to noise ratio of 50. But sky and readout noise are significant.

 Every square arcsecond of sky gives:

Nsky = η εatm εtel εfilt εwin εgeom φsky Δλ A t

φsky is the flux from the sky in photons s−1cm−2 Å−1arcsec−1

10 t photons from the dark sky (V21.5)
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Aperture photometry (2)

 Assume we have two apertures, one on the star and one on sky. Star 

aperture includes sky as well, and our estimate of the star intensity is 

the difference between the two. 

 Signal in the sky aperture is:

 nsky = β Nsky

 Signal in the star aperture is:

 n*+sky = β Nsky + Nstar
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Noise on the measurements

 Noise on the measurements has two components, photon noise which is given by the 

square root of the number of photons, and readout noise, which is determined by the 

readout noise and by the number of pixels in the aperture. The noise components 

add in quadrature:

σsky
2 = nsky + npix σR

2 

σ*+sky
2 = n*+sky + npix σR

2

n*  n*+sky – nsky

 σ*
2 = n*+sky + nsky + 2 npix σR

2

σ*
2 = 2 β Nsky + Nstar + 2 npix σR

2
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Signal to Noise ratio

S/N = n* / σ* = Nstar / σ*

𝑆

𝑁
=

Nstar

2 βNsky+Nstar + 2 𝑛pixσR
2

If exposure time is short then readout noise (σR~10) will dominate,

especially when seeing is bad.
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Note: seeing comes in with npix term

Nstar = η εatm εtel εfilt εwin εgeom φ* Δλ A t
Nsky = η εatm εtel εfilt εwin εgeom φsky Δλ A t



What is ignored in this S/N eqn?
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 Bias level/structure correction

 Flat-fielding errors

 Charge Transfer Efficiency (CTE)

0.99999/pixel transfer

 Non-linearity when approaching full well

 Scale changes in focal plane

 A zillion other potential problems



Improving the Signal to Noise (1)

 Larger Sky Aperture – Increasing the sky aperture and scaling it to the size of the 

object aperture, or using several sky apertures and averaging them, reduces the 

noise to: 

σ*
2 = ζ β Nsky + Nstar + ζ npix* σR

2

    

where ζ = ( 1 + npix* / npix_sky), and npix* and npix_sky are the number of pixels in the 

star and sky apertures respectively. In practice, the sky aperture is often an annulus 

around the star aperture. Must be careful that stars do not get in the sky aperture!
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Improving the Signal to Noise (2)

 Smaller object aperture – reducing the object aperture reduces both sky noise and 

readout noise. However, you lose signal. The problem is if you are comparing the 

signal in different images, and fluctuations in image size (seeing) cause the amount of 

signal you lose to vary, then this introduces systematic errors in the brightness 

measured (photometry).

Solution – Aperture Correction

418



Aperture Correction (1)

 The point spread function (PSF) is the shape of the CCD image of a 

point (unresolved) source of light.

 Since the PSF is the shape of a point of light on the CCD, and since all 

stars are points, then all stars have exactly the same shape and size on 

the CCD, if aberrations are not significant.

 The PSF does not have an edge. The intensity of the star fades smoothly 

to zero with increasing radius, but there is no place that we could call an 

“edge”.
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Aperture Correction (2)

Brighter stars may look bigger, but 

that is caused by the following effect: 

the shape of the faint and bright star 

are exactly the same, we are simply 

looking at a larger diameter at a 

given intensity for a bright star than 

for a faint star.

420



Aperture Correction (3)

 If we want to measure all the light from a star, 

how far out in radius do we have to go?

 One logical answer might be: as big as possible, to get “all” the light from the star. 

This is not a good answer.

 Reducing the object aperture reduces both sky noise and readout noise.

 But, a small aperture will only encompass a fraction of the total light from the star! 

However, if the seeing were constant, any aperture would measure the same fraction 

of light for any star, and when comparing one star with another the effect would 

cancel out.
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Aperture Correction (4)

 The problem is that seeing is not constant. A small aperture might 

measure 0.5 of the total light from a star on one CCD image, then, if 

the seeing worsens, the same size aperture might measure only 0.4 of 

the light from the star on the next CCD image.

 Seeing affects mostly the inner Gaussian core of the image. Using an 

aperture 4 to 10 times the diameter of the typical FWHM will get 

most of the light. In this size aperture, reasonable variations in the 

seeing will not result in measurable variations in measured counts.
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Aperture Correction (5)

 However, for faint objects, an aperture 4 times the FWHM will contain 

a lot of sky signal. This will result in a low S/N ratio. 

 Aperture Correction: If we measure the bright object in a small 

aperture (say radius = 1 FWHM) and also in a bigger aperture which 

gets “all” the light (say 4 FWHM) we can easily find the ratio of light 

in the small to large aperture (which we express as a magnitude 

difference).
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Aperture Correction (6)

 The aperture correction is defined as:

∆ = minst(4 FWHM) − minst(1 FWHM)

(∆ is always a negative number)

 How do we use the aperture correction?

total = minst(1 FWHM) + ∆

 “Total” is our estimate of the total instrumental magnitude in the faint 

star, minst(1 FWHM) is the measured magnitude in the small aperture 

for the faint star, and ∆ is the aperture correction derived from a 

bright star in the same frame.
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Aperture Correction (7)

 There must be an optimum aperture size that gives the maximum S/N. 

 The optimum size of the small aperture has been studied by several 

authors. 

 The optimum aperture seems to be achieved when the measurement 

aperture has a diameter about 1.4 × FWHM of the PSF. At this 

aperture, the aperture correction is about −0.3 mag. 

 However, the S/N does not appear to be too sensitive to the exact 

small aperture size.
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Improving the Signal to Noise (3)

 On-chip binning – Most CCDs have the option of binning: combining a set 

of adjacent pixels into a single pixel produced as output. For example, a 

square of 4 pixels on the CCD chip might be reported as one pixel 

containing their combined value. But you only have to read the output 

capacitor out once and you only get one lot of readout noise.
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On-chip binning

 This way you reduce readout 

noise at the expense of 

resolution. Resolution should 

always be smaller than the 

characteristic size of the star 

images.
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Profile Fitting (1)

 Profile fitting is used most commonly in crowded fields, where it is 

difficult or impossible to define a sky aperture free of stars 

(or galaxies).

 It does however offer an advantage in precision even in sparse fields, 

because it weights the data more correctly.
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Profile Fitting (2)

 Basic assumption is that the intensity profile (which is in principle a 2 

dimensional function) is the same for all stars in a particular CCD 

image.

 Intensity profile is determined by seeing or by diffraction, or 

occasionally by aberrations. 

 If it is determined by aberrations you need to be very careful, 

because the assumption that the profile is the same at all positions on 

the CCD may not be correct.
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Profile Fitting (3)

 From a set of isolated, comparatively bright (but not saturated) stars in the 
frame, determine the image profile, this is called the Point Spread Function 
(PSF).

 For ground based data an empirical approximation to the PSF is 
the Moffat function:

f(r) = Ci (1 + r2/R0
2)-β + Bi    (r < rmax)

f(r) = Bi (r > rmax)

    R0 is the characteristic radius of the star image, 
r is the distance from the centre of the image, 
β describes the overall shape of the PSF, 
Bi is the background in the region of star i, and 
Ci is the relative brightness of star i.
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Profile Fitting (4)

FWHM=2 R0 21/β − 1

 Fit this function for each of the stars in the image to the data, using 

a least squares or similar technique. 

 For each star determine Bi and Ci. 

R0 and β are constant within an image.

431



Profile Fitting (5)

 Then we have a set of scaling factors, which can be converted to a 
relative magnitude.

 We need aperture photometry of one star, either from this CCD frame or 
from another, this can be a bright isolated star with high S/N, this gives 
the magnitudes of all of the stars in the frame.

 The fit gives the correct weighting, rather than adding in lots of pixels 
with very little signal, S/N from profile fitting is usually at least a factor 
of 2 higher than from aperture photometry.

 Profile fitting can cope with fields in which stars are close or their images 
even overlap.
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Profile Fitting (6)

 For ground-based data the PSF is determined by the seeing, and must 

be redetermined for each CCD image.

 For space based (e.g. Hubble Space Telescope) data the PSF is fixed, 

and is often available as part of the standard calibration data 

produced with the observations. 

It still depends upon the passband (filter). 
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