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Physical limitations on the precision of photometric

measurements (6)
s |

0 In dark sky at a dark site (no moon, no reflected street light),
the magnitude of a 1 arcsecond patch of sky in the V band is
approximately Vg =21.5 mag.

Thus, every square arcsecond of sky gives:

S

sy = 2.5%X1073 photons / (cm? arcsec? second)



Physical limitations on the precision of photometric
measurements (7)
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7 To calculate the Output Signal-To-Noise Ratio of an observation we need to know
the signal, and all sources of noise. These are:

Photon noise (shot noise) from the signal;

Photon noise from the sky background under the signal;

Photon noise from the sky background measurement to be subtracted off;
Readout noise from all sources;

Fixed pattern noise;

Bias noise;

Dark current noise.



A case study of simple aperture photometry (1)

We observe a star on a CCD detector,
and process the data in the simplest
way possible.

An area centred on the star is defined
to be the object area and

is large enough to contain all

the photons from that star.

An equal area some distance away,
which is found to be free of stars, is
defined as the sky background area
(sky aperture), and the sky
background is measured from that.




A case study of simple aperture photometry (2)
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1 We will make some assumptions:

We have eliminated fixed pattern noise by dividing the
image by a normalised long exposure of a uniform
light source, this is called a flat field.

Bias noise and dark current noise are negligible, as this
is a cryogenically cooled, buried channel CCD.



Aperture photomeitry

There are a number of parameters we need to take into
account to calculate the signal which reaches the detector:

t —exposure time

B —angular size of a source (defined by the seeing)

D — diameter of the telescope

Seky [photons / (cm? arcsec? second)] — brightness of the sky

n —quantum efficiency of a detector (QE)

f+ [photons / (cm? second)] — the source flux to be measured



Signal calculation (1)

We start from the number of photons incident from this star,
from the sky, and from the star + the sky:

A ~ D? is the telescope collecting area [cm?]
B ~ B? is the source area on the sky [arcsec?]

.~ n D?tf. —an average number of photons from the source
ng,~n D?tB*S —an average number of photons from the sky

Nrygiy = 1N D? t (f-+PB*S) —an average number of photons from
the source and the sky



Signal calculation (2)

That is without the Readout noise and other detector noises.
If we want to take them into account — we must add
N,=n,t to the right side of equations.

There is also a geometric efficiency factor as part of the
aperture of the telescope is blocked by the secondary mirror.

For a while, we will not take these factors into account.



Noise on the measurements

1 Noise on the measurements is given by the square root of the
number of photons:

O *+sky - \/n*+sky

Ny = n’*‘+sky - nsky

(If x and y have independent random errors 6, and o, then the error in
z=x+yis0,>=0,*+07



Signal to Noise ratio (1)

n.~nDtf.

S/N =2 = -
O« \/n*+2n5ky \/77 t(ﬁ +21325')

Ng,~nD?tBS

Let’s now consider two special cases:
o If the Source dominates over the Sky: n. >> n

- If the Sky noise dominates: n, >> n.



Signal to Noise ratio (2)
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i — nDtf,

S/N =
VEA2sky [t (£ 42 £S)

If the Source dominates over the Sky: n. > n

S/N"’ —\/7 D\ ntf,

[~ 1/ (D?t) forthe given S/N

\

the telescope aperture is most important!



Signal to Noise ratio (3)
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i — nDtf,

S/N =
VEA2sky [t (£ 42 £S)

If the Sky noise dominates: n,  >> n.

nDtf, Df, |nt

S/N = =
/ /2nsky \/2’7 t BZS B 2S5

Jnin or the given S/N

/D\jt

the seeing (angular size of a source) is most important!




Signal to Noise ratio (4)

Source dominates over the Sky Sky noise dominates

S/N= D\ntf, S/N =
1
fmin~D_2t fmin

for the given S/N

most important is
the telescope aperture

~lal v

the seeing

for the given S/N



Photometry

The technique that measures the relative amounts of light
in different wavelength ranges.



Stellar magnitudes
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7 Magnitudes:
Apparent magnitudes m, —m, = —2.5 log%

Absolute magnitudes

M —m = —2.5log (%)2

D is the object’s distance in parsecs

M=m+5-5logD
M=m+5-5logD —A-D

A is the interstellar absorption in magnitudes per parsec. Within the galactic
plane A is ~0.002 mag pc'.

1 Sometimes M may be estimated by some independent method. Then:

D = 10lm-M+5)/5] 5



Filters and photometric systems

Filter (photometric) systems:

Filters are used to restrict the wavelengths of electromagnetic radiation that
hit the detector.

Why may we want to do that?

Because stars have different colours that means they have different
tfemperatures.



Observing through filters (1)

Hot obiec’rs emit Spectra of two blackbodies at different temperatures

most of their light at

3000 K

short wavelengths

Cool objects emit
most of their light at

long wavelengths

Normalized intensity of light

300 400 500 600 700 800 900

Havelength (nm)



Observing through filters (2)
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Observing through filters (3)




Observing through filters (4)

Which are the brightest stars?

It depends on
the bandpass through which
one observes them.




Photometric systems

There is a number of different photometric systems, each one based on a
particular passband (i.e. a particular combination of filter and detector and
telescope).

They may be grouped into wide, intermediate, and narrowband systems
according to the bandwidth of their transmission curves. In the visible region:

Wide (broadband) filters have bandwidths of ~1000 A
Intermediate: 100-500 A
Narrowband filters range from 0.5 to 100 A.

One should always remember to specify the system when quoting the
magnitude of a star.



Johnson-Cousins photometric system (UBVRI)

Most astronomers working in the optical use the Johnson-Cousins UBVRI
photometric systems:

Johnson and Morgan defines the UBV system with stars visible in the northern hemisphere
Cousins defines the redder R and | passbands.

The systems are defined by particular combinations of glass filters and
photomultiplier tubes (they were created many years ago before CCDs existed).
Since photomultipliers and CCDs have very different spectral sensitivities, it is
difficult to make the effective passband of a CCD-based instrument match that of
a photomultiplier-based instrument.

In 1990, Michael Bessell came up with a recipe for making filters out of common

colored glasses which would reproduce pretty closely the official Johnson-Cousins
UBVRI passbands =2 Bessell filters.



Johnson-Cousins photometric system

11 The spectral resolution of the broadband UBVRI passbands is small:
R=A/AA=5

The Bessell approximations to UBVRI passbands

Overall transmission
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SDSS (ugriz) photometric system
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o Although UBVRI is the best known optical system, there are a number of others. Some were specifically
designed to solve a particular astrophysical problem, others to mesh with particular detectors.
One important system is the u’g’r’'i’z’ that is being used by the Sloan Digital Sky Survey (SDSS) and
the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). It has become very

popular recently. . _
TNG standard optical broad band filters

Transmission (%)

| [

4000 5000 6000 7000 8000 9000
Wavelength (&)




Stromgren photometric system
s5

71 Stromgren photometric system (uvby) is four-colour intermediate-band photometric system (plus H
filters) for stellar classification. It was pioneered by the Danish astronomer Bengt Stromgren in 1956.

Stromgren filter set
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Narrowband photometric systems

For some applications, astronomers use narrowband filters; a common

filter used to measure light emitted by hydrogen atoms is centered at
6563 Angstroms and roughly 20 Angstroms wide: R = A/AA = 330

A narrowband filter like this requires much longer exposure times to
build up the same signal as a broadband filter. Since telescope time is
so precious, astronomers tend to use broadband systems.

That's one reason for the popularity of the UBVRI or SDSS systems.



Photometric systems (optical)
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The Infrared Photometric Bands: JHK+others
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... where the atmospheric transmission windows are
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Atmospheric transmission
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Wavelength (um)



Filter transmission curves (1)

Typical broad-band transmission curves are not rectangular, and even not symmetric.

Different quantities can be used to describe a filter, e.g.:

A, is the wavelength halfway
between the points, where the
band transmission profile reaches
half of the maximum value.

WHM is the the full wavelength
span between the points,
where the band transmission
profile reaches half of

the maximum value.

Aeqi is the wavelength at which

the band transmission profile
reaches its maximum.

response

©
o)

0.0

2.0 | 2.2 AM(um) 2.4
From Fiorucci and Munari, 2003, A&A, 401, 781




Filter transmission curves (2)
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1 Some important parameters depend on the source spectrum.
For example,

Ay is the mean wavelength of the band, the property of just a band:

_f/{F(A)dA
T [Fydd

whereas the effective wavelength A_ is

B [AF()S(2)da
~ [FQ)S()da

/leﬁ'

where
F (A) is the transmission profile of the band, and

S (A) the energy distribution of a source spectrum.



NOT filters:

[ALFOSC.Bes_E

NOT/ALFOSC.i797
NOT/ALFOSC.Bas_I

Filter transmission curves (3)

Good sources of info:

o The Asiago Database on Photometric Systems =———

(218 systems; checked on 2023-09-20)

http://ulisse.pd.astro.it/Astro /ADPS
Fiorucci and Munari, 2003, A&A, 401, 781

o Filter Profile Service
(10625 filters available on 2023-09-20)

h’r’rp://son.cq b.inta-csic.es /theory /fps/
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Magnitudes & Photometric systems
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1 When writing the magnitude of a star, astronomers use an abbreviation to denote the
photometric system of the measurement:

V = 1.03 (or 1.03V) means “magnitude of this star in the V system is 1.03”
B = 0.46 (or 0.46B) means “magnitude of this star in the B system is 0.46”

But a magnitude system can be different!



Magnitude systems

m; —m, = —2.5 logF—
0

o The flux F, defines the reference or zeropoint of the magnitude scale. The choice is arbitrary.

0 Standardizing magnitudes (magnitude systems):
2 Vega system
o AB system
o ST Magnitudes

A magnitude system is not a photometric (filter) system
(you can use a filter in any system)



Photometry: Vega system

Astronomers have chosen to use the bright star Vega (a Lyr) as
their starting point.

In the UBVRI systems, the star Vega is defined to have a magnitude of zero in
all bands (actually, this is not quite true):

U= 0.0; B = 0.0; V = 0.0; R = 0.0; | = 0.0
This means also that all the colours of Vega are zero.

The zero-point of this system depends on the flux of Vega (outside the
atmosphere) and is different in different bands.
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Photometry: AB system

In the AB system, which is not based on Veggq, it is assumed that the flux constant Fy is
the same for all wavelengths and passbands.

. . e . . 4
That constant is per definition such that in the V filter: mve‘qa = m{;lB =0

(or more accurately: F, dv = F, d\ when averaged over the V filter, or at the effective
wavelength of the V filter, A, = 5480 A. Based on the work of Oke (1974), then

m, = —2.5log F, — (48.585 + 0.005)

where F, (A) is the spectral flux density per unit frequency of a source
at the top of the Earth’s atmosphere in units of erg s™'em™ Hz™.

Note that the AB magnitude system is expressed in c rather than F,!

The flux density in F, is related to the flux density in F, by:
A[A]?

F 1 em™2 Hz' ]=1078
ylergss™! em z 1] CTom 5]

F,lergss™' em™2A™1]

One can easily convert between AB magnitudes and Janskys:
In AB magnitudes, mag O has a flux of 3631 Jy.
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AB and VEGA systems compared

1 The difference between AB and

VEGA magnitudes becomes very
large at redder wavelengths!

1 The spectrum of Vega is very

complicated at IR wavelengths and
often model atmospheres are used
adding to uncertainties

Flux density, f, [ergs/s/cm?/A]

[ergs/s/cm?/Hz]

Flux density, f,
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