
S I M P L E  L I N E  T R A N S F E R

S C H U S T E R - S C H W A R Z S C H I L D  M O D E L

T H E O R Y  O F  L I N E  F O R M A T I O N

C U R V E  O F  G R O W T H
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Simple theory of line 
formation



Schuster-Schwarzschild model

We now turn to the solution of the transfer equation for both 
line and continuum radiation. We will adopt the Schuster-Schwarzschild 
model, which assumes that the line is formed above the continuum and that 
continuous opacity plays only indirect role.

The total absorption coefficient within an arbitrary line is the sum of the line 
(L) and continuum (C) contributions i.e. = L+C as is the total emission 
coefficient (= L+C). Hence, 

S=(L+C)/(L+C)

    and  

d= -(L+C) dz                  = L+C 

 So, we can write the transfer equation as usual:

cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆
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Line source function

• We have seen earlier that the emergent flux from the stellar surface is  times 
the Source function at an optical depth of  2/3:  

𝐹𝜆 0 = 𝜋𝑆𝜆 𝜏 = Τ2 3

• Across a line profile,  varies, being larger towards the centre. The condition 
=2/3 is true higher up in the atmosphere for  near line centre and 
holds for progressively deeper layers for  further into the wing. 

• Assuming S is a slowly varying function of  (i.e. constant over the line width),   
𝜋𝑆𝜆 𝜏1 = Τ2 3 = 𝐹𝜆(0) provides a mapping between F as a function of  and 
S as a function of  
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Theory of line formation

Because of larger absorption in the line, it is formed higher up in the 
atmosphere where T is lower => absorption line.

= L+C 

Consider weak lines: the layer =2/3 is close to the layer with C=2/3.

L << C     →   = C (1+L/C)

We can evaluate S by a Taylor expansion around the point C = :

𝑆𝜆(𝜏𝜆 = 2/3) ≈ 𝑆𝜆(𝜏𝐶 = 2/3) + ቤ
𝑑𝑆𝜆

𝑑𝜏𝑐 𝜏=2/3

Δ𝜏𝐶

 /C =  /C   →   C= (𝜏L+𝜏C)
C

L+C
≈

2

3

C

L+C
≈

2

3
1 −

L

C
  for L << C 

C= 𝜏λ+Δ𝜏C=
2

3
+Δ𝜏C            →          Δ𝜏C= −

2

3

L

C
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Such a line is 
called optically 
thin. 



Theory of line formation

The line equivalent width is then (LTE: 𝑆𝜆 = 𝐵𝜆)
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𝑊𝜆 = න
𝐹𝑐 − 𝐹𝜆

𝐹𝑐
𝑑𝜆 = න𝑑𝜆

𝐵𝜆(𝜏𝑐 = 2/3) − 𝐵𝜆(𝜏𝜆 = 2/3)

𝐵𝜆(𝜏𝑐 = 2/3)

𝑊𝜆 = න𝑑𝜆 ቤ
𝑑𝐵𝜆(𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

2

3

𝛼𝐿

𝛼𝐶

1

𝐵𝜆(𝜏𝑐 = 2/3)
=

𝑊𝜆 =
2

3
න𝑑𝜆 ቤ

𝑑 ln 𝐵𝜆 (𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

𝛼𝐿

𝛼𝐶

𝑊𝜆 =
2

3

1

𝛼𝐶
ቤ

𝑑 ln 𝐵𝜆 (𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

× න

0

∞

𝛼𝐿𝑑𝜆
Weakly depends on λ

If there is no temperature gradient with the 
temperature decreasing outwards, then there 
are no absorption lines in the spectrum.

The profile mimics the shape of αL. 
Line strength can be increased by 
decreasing the continuous absorption αC 

or by increasing the line absorption αL.

𝑆𝜆(𝜏𝜆 = 2/3) ≈ 𝑆𝜆(𝜏𝐶 = 2/3) −
2

3

L

C

ቤ
𝑑𝑆𝜆

𝑑𝜏𝑐 𝜏=2/3



Theory of line formation

For optically thin lines with L << C ,   WN 
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𝑊𝜆 =
2

3

1

𝛼𝐶
ቤ

𝑑 ln 𝐵𝜆 (𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

× න

0

∞

𝛼𝐿𝑑𝜆

𝛼𝐿 = 𝜎𝐿𝑛,       𝑁 =  𝑛 𝑑𝑟 =
𝑛

𝛼𝐶
 𝛼𝐶 𝑑𝑟 = 𝜏𝑐

𝑛

𝛼𝐶
≈

2

3

𝑛

𝛼𝐶
  ➔ 𝑊𝜆 ∝ 𝑁 



Strong lines

For L << C, the line is optically thin, and its strength increases 
proportionally with L /C. If L/C>1, the line becomes optically thick, 
reaching a maximum depth R. For very thick lines with L/C=, the 
intensity in the line centre is given by the source function S(=0), or 
B(= 0) in LTE. This is not zero since T(= 0) is non-zero. 

If non-LTE applies, when SB, S(=0) may tend towards zero, for instance, 
in resonance lines (arising from transitions between the ground states and  
the first energy level).
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Curve of Growth

 The Curve of growth describes how the equivalent width (line 
strength) W depends on the number of absorbing atoms or ions. 

 For weak, optically thin lines, as the abundance doubles, the line 
equivalent width also doubles in strength: 
WN – this is the LINEAR part of the curve of growth. 

 As the abundance continues to increase, the Doppler core of the line 
becomes optically thick and saturates. The wings of the line, which are 
still optically thin, deepen, which occurs with little change in the line 
equivalent width and so produces a PLATEAU in the curve of growth, 
W(ln N)1/2.

 Ultimately, the damping wings become optically thick, increasing the 
equivalent width, W(N)1/2. This is the DAMPING or SQUARE ROOT 
part of the curve of growth.
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Curve of Growth

270

Curve of growth for the K line of Ca II. As N increases, the functional 
dependence of the equivalent width changes.



Methodology

 Using the curve of growth and a measured 
equivalent width we can derive the number of 
absorbing atoms.

 The Boltzmann and Saha equations convert this 
value into the total number of atoms of that 
element in the photosphere → abundance.

 To reduce errors, it is advisable to locate several 
lines on a curve of growth
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Thermal and Pressure effects

The exact form of the curve of growth depends on the ratio of pressure to 
thermal broadening,  = / 2D. 

For increasing Doppler line width, saturation occurs for larger W, whilst the 
damping part will start earlier if  (i.e. ) is larger.
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S C A T T E R I N G  I N  L I N E S

T H E  M I L N E - E D D I N G T O N  M O D E L

R E S I D U A L  F L U X  O F  T H E  L I N E

A B S O R P T I O N  A N D  S C A T T E R I N G  L I N E S

S C H U S T E R  M E C H A N I S M  F O R  L I N E  E M I S S I O N  

273

Transfer Equation 
including lines



Summary of simple line transfer

Simple line transfer:
The total absorption coefficient within an arbitrary line is the sum of the line (L) and 
continuum (C) contributions i.e. = L+C as is the total emission coefficient 
(= L+C). Hence, 

S=(L+C)/(L+C)
    and  

d= -(L+C) dz        = L+C 

 So, we can write the transfer equation as usual:       cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆

The surface specific intensity 

and surface flux 

are obtained as previously. 

Again, we need to know S( ) to evaluate these integrals.
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𝐼𝜆(0, 𝜃) = න
0

∞

𝑆𝜆 (𝜏𝜆)𝑒−𝜏𝜆 sec 𝜃 sec 𝜃  𝑑𝜏𝜆

𝐹𝜆(0) = 2𝜋 න
0

1

𝐼𝜆 (0, 𝜃)𝜇𝑑𝜇 =cos 
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Scattering in lines

 Special case: 
Coherent scattering: 1 = 2

 Common case: 
2-level atom absorbs photon with 
frequency 1, re-emits photon with 
frequency 2; frequencies not exactly 
equal, because
 levels a and b have non-vanishing energy width

 Doppler effect because atom moves

 Non-coherent scattering requires 
a redistribution function
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Transfer Equation including lines

Classical approach: 

absorption of photons by line has two parts

1. (1-ζ) of absorbed photons are scattered
   (e- returns to original state)

2. ζ of absorbed photons are destroyed
   (into thermal energy of gas)
   (for LTE: ζ =1)
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Resonance lines
(to/from the 
ground level)

A photon 1→2 
returns back to 
the radiation field, 
thus dominates 
Scattering

Subordinate 
lines (to/from 
higher levels)

A photon 3→4 
disappears,

thus dominates 
True absorption



Scattering
277

 Pure Absorption and Thermal Emission:

𝑺 𝝉 =
𝜺

𝜶
 𝐋𝐓𝐄: 𝜺𝒕𝒉 = 𝜶𝒕𝒉 𝑩(𝝉) 

 Pure Scattering:
For the case of pure scattering, the associated emission becomes completely 
insensitive to the thermal properties of the gas, and instead depends only on the 
local radiation field. If the scattering is roughly isotropic, the scattering emissivity 
𝜺sc in any direction depends on both the opacity and 
                                 the angle-averaged mean-intensity      𝜺sc =sc J=sc J 
This implies then that, for pure-scattering,

𝑺 𝝉 = 𝑱 𝝉

 Source Function for Scattering and Absorption:
The total opacity consists of both scattering and absorption,   abs+ sc

The total emissivity likewise contains both thermal and scattering components 
𝜺= 𝜺th + 𝜺sc= th B +sc J .   The general source function

𝑺 𝝉 = 𝜻𝑩 + (𝟏 − 𝜻)𝑱 𝝉
ζ≡

abs

abs+ sc

absorption fraction



The Milne-Eddington model (1)

Consider a case where at the given frequency the total opacity is a combination 
of both continuum and line processes:

Total absorption coefficient is  𝜶𝝂= 𝜶𝝂
𝑪 + 𝜶𝝂

𝑳 + 𝝈

                                                                 𝜶𝝂 × 𝝓𝝂= line opacity × line profile

The total optical depth is            ⅆ𝝉𝝂 = −(𝜶𝝂
𝑪 + 𝜶𝝂

𝑳 + 𝝈) ⅆ𝒔

(larger than in the continuum!)

The correponding emissivities 𝜺𝝂 = 𝜺𝝂
𝑪 + 𝜺𝝂

𝑳 + 𝝈𝑱𝝂
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scattering in the continuum

𝜇
𝑑𝐼𝜈(𝜇)

𝑑𝜏𝜈
= 𝐼𝜈(𝜇, 𝜏𝜈) − 𝑆𝜈(𝜏𝜈) 𝜇

𝑑𝐼𝜈

𝑑𝑠
= −𝛼𝜈𝐼𝜈 + 𝜀𝜈

Recall radiative
transfer equation

=

𝑺 𝝉 =
𝜺

𝜶
 



The Milne-Eddington model

Transfer equation:

                                          -absorbed      +thermal    +scattered

𝜇
𝑑𝐼𝜈

𝑑𝑠
= −(𝛼𝜈

𝐶 + 𝛼𝜈
𝐿 + 𝜎)𝐼𝜈 + 𝜀𝜈

𝐶 + 𝜎𝐽𝜈 + 𝜁𝛼𝜈
𝐿𝐵𝜈 + (1 − 𝜁)𝛼𝜈

𝐿𝐽𝜈

                                                                        +therm. line em.   +scat. line emission (coherent)

Without dealing with the general case for the computation of all 
coefficients we assume:

• LTE in the continuum                        𝜀𝜈
𝐶 = 𝛼𝜈

𝐶𝐵𝜈(𝑇) 

• scattering negligible in the continuum    𝜎 ≪ 𝛼𝜈
𝐶
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𝜺 = 𝜺th + 𝜺sc= th B +sc J 

The following slides with light-grey backgrounds (like in this box) are for self-study. 
The derivation of equations will not be asked at the exam but will help understand 

the important results and conclusions.



The Milne-Eddington model (2)

Using    𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶           𝑑𝜏𝜈 = −(𝛼𝜈

𝐶 + 𝛼𝜈
𝐿) 𝑑𝑠 = −𝛼𝜈

𝐶(1 + 𝛽𝜈) 𝑑𝑠

𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝐵𝜈

1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
−

1 − 𝜁 𝛽𝜈

1 + 𝛽𝜈
𝐽𝜈 = 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

 𝜆𝜈 ≡
1+𝜁𝛽𝜈

1+𝛽𝜈
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𝜇
𝑑𝐼𝜈

𝑑𝑠
= −(𝛼𝜈

𝐶 + 𝛼𝜈
𝐿)𝐼𝜈 + 𝛼𝜈

𝐶𝐵𝜈 + 𝜁𝛼𝜈
𝐿𝐵𝜈 + (1 − 𝜁)𝛼𝜈

𝐿𝐽𝜈

Milne-Eddington Equation.
Solve at each frequency point 
across profile.

𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

destruction probability



The Milne-Eddington model (3)

Milne-Eddington assumptions (for analytical solution):

1. ,  and  are constant with depth

2. B is linear in continuum optical depth: Bν=a+bτc

Also, the Eddington approximation
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𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

𝐾𝜆(𝜏𝜆) =
1

3
𝐽𝜆(𝜏𝜆)



Lecture 6 Lecture 18
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Recap: Eddington approximation



Recap: Moments of intensity 
283

 The mean intensity J is the directional average (over 4 steradians) of the 
specific intensity [0-th moment of intensity]:

𝐽𝜆 ≡
1

4𝜋
ර𝐼𝜆𝑑𝜔 =

2𝜋

4𝜋
න

−1

1

𝐼 𝜇 d𝜇 =
1

2
න

−1

1

𝐼(𝜇)d𝜇

 Eddington flux H,, is the directional average (over 4 steradians) of the 
projection of the specific intensity [1st moment of intensity]:

𝐻𝜆 =
1

4𝜋
ර𝐼𝜆 cos 𝜃 𝑑𝜔 =

2𝜋

4𝜋
න

−1

1

𝐼(𝜇) 𝜇 d𝜇 =
1

2
න

−1

1

𝐼(𝜇) 𝜇 d𝜇

 K-integral [2nd moment of intensity] :

𝐾𝜆 =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔 =

2𝜋

4𝜋
න

−1

1

𝐼(𝜇) 𝜇2 d𝜇 =
1

2
න

−1

1

𝐼(𝜇)𝜇2d𝜇

F - astrophysical flux
H - Eddington flux
F= F=4H



The Milne-Eddington model (4)

Multiply both sides by d and  d and integrate:
𝑑𝐻𝜈

𝑑𝜏𝜈
= 𝐽𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈)

𝑑𝐾𝜈

𝑑𝜏𝜈
= 𝐻𝜈 =

1

3

𝑑𝐽𝜈

𝑑𝜏𝜈

Differentiate again
𝑑2𝐾𝜈

𝑑𝜏𝜈
2 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈) =

1

3

𝑑2𝐽𝜈

𝑑𝜏𝜈
2
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𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

1

2
න

−1

+1

… [𝜇] 𝑑𝜇 × ×
1

2
න

−1

+1

… [𝜇] 𝑑𝜇

Eddington
approximation

F - astrophysical flux
H - Eddington flux
F= F=4H

න
0

∞ 𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 =

𝐹(𝜏)

4𝜋
= 𝐻(𝜏)

The third radiative equilibrium condition 



The Milne-Eddington model (5)

Bν is linear in τ, so zero second derivative 
𝑑2𝐵𝜈

𝑑𝜏𝜈
2 = 0

1

3

𝑑2𝐽𝜈

𝑑𝜏𝜈
2 =

1

3

𝑑2(𝐽𝜈 − 𝐵𝜈)

𝑑𝜏𝜈
2 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈)

This can be integrated to give

𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

Apply boundary condition at depth:
𝜏𝜈 → ∞ ⇒  𝐽𝜈 → 𝐵𝜈 ⇒  𝓑 = 𝟎

285

1

3

𝑑2𝐽𝜈

𝑑𝜏𝜈
2 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈)



The Milne-Eddington model (6)

Now apply boundary condition at surface:

𝜏𝜈 = 0 ⇒  𝐽𝜈 = 𝐵𝜈 + 𝒜

From grey atmosphere solution, get J(τ=0):
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𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

𝐽(𝜏) =
3

4𝜋
𝜏 + 𝑞(𝜏) 𝐹(0) = 3𝐻(0 +

1

3
) = 3𝐻

q() is a slowly varying 
function (Hopf function), 

with 𝑞 = Τ1 3 at =0 

Lecture 19



The Milne-Eddington model (7)

Now apply boundary condition at at surface:

𝜏𝜈 = 0 ⇒  𝐽𝜈 = 𝐵𝜈 + 𝒜

From grey atmosphere solution, get J(τ=0):
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𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

  HHFqJ 3)
3

1
0(3)0()(

4

3
)( =+=+= 






The Milne-Eddington model (8)

Now apply boundary condition at at surface:

𝜏𝜈 = 0 ⇒  𝐽𝜈 = 𝐵𝜈 + 𝒜

From grey atmosphere solution, get J(τ=0):

From Bν=a+bτc   𝐽𝜈(τc = 0) = 𝐵𝜈 + 𝒜 = a+𝒜 =
1

3
ቚ

𝑑𝐽𝜈

𝑑𝜏𝜈 𝜏𝜈=0
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𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

𝐽(𝜏) =
3

4𝜋
𝜏 + 𝑞(𝜏) 𝐹(0) = 3𝐻(0 +

1

3
) = 3𝐻

)0(
3

1
)0(

3

1

0










JH

d

dJ
==

=



The Milne-Eddington model (9)

1

3
ቤ

𝑑𝐽𝜈

𝑑𝜏𝜈 𝜏𝜈=0

=
1

3
−𝒜 3𝜆𝜈 +

𝑏

1 + 𝛽𝜈
= a+𝒜

can now solve for 𝒜!

𝒜 =

𝑏
1 + 𝛽𝜈

− 3𝑎

3 + 3𝜆𝜈

Define    𝑝𝜈 ≡
𝑏

1+𝛽𝜈
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𝐽𝜈 = 𝐵𝜈 + 𝒜𝑒− 3𝜆𝜈𝜏𝜈 = 𝑎 + 𝑏𝜏𝑐 + 𝒜𝑒− 3𝜆𝜈𝜏𝜈

𝐽𝜈(𝜏) = 𝑎 + 𝑝𝜈𝜏𝜈 +
𝑝𝜈 − 3𝑎

3 + 3𝜆𝜈

𝑒− 3𝜆𝜈𝜏𝜈



Thus, we obtained the fully analytic solution for the mean intensity

We can use this to obtain the emergent flux

The Milne-Eddington model (10)

Thermalization
depth
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𝐽𝜈(𝜏) = 𝑎 + 𝑝𝜈𝜏𝜈 +
𝑝𝜈 − 3𝑎

3 + 3𝜆𝜈

𝑒− 3𝜆𝜈𝜏𝜈

𝐻𝜈 0 =
1

3
𝐽𝜈 0 =

𝑎

3
+

𝑝𝜈 − 3𝑎

3(1 + 𝜆𝜈)
=

𝑝𝜈 + 𝑎 3𝜆𝜈

3(1 + 𝜆𝜈)

𝑩𝝂

𝜏𝜈 ≳
1

𝜆𝜈

𝑱𝝂 → 𝑩𝝂

𝑱𝝂 < 𝑩𝝂 

in outer parts of 
atmosphere



Residual flux of the line

Residual flux (relative intensity)

𝑟𝜈 =
𝐹𝜈

𝐹𝑐
=

𝐻𝜈(0)

𝐻𝑐(0)

for continuum Hc:       𝛽𝜈 = 0 ⇒  𝑝𝜈 = 𝑏         𝜆𝜈 = 1

𝐻𝑐 0 =
1

3

(𝑏 + 𝑎 3)

2

𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3)
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𝐻𝜈 0 =
𝑝𝜈 + 𝑎 3𝜆𝜈

3(1 + 𝜆𝜈) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 



Non-negligible scattering in continuum 

for continuum Hc:       𝛽𝜈 = 0 ⇒  𝑝𝜈 = 𝑏         𝜆𝜈 = 𝜻𝑪

𝐻𝑐 0 =
(𝑏 + 𝑎 3𝜁𝐶)

3(1 + 𝜁𝐶)
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𝐻𝜈 0 =
𝑝𝜈 + 𝑎 3𝜆𝜈

3(1 + 𝜆𝜈) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
𝜻𝑪 + 𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝑟𝜈 =
𝑝𝜈 + 𝑎 3𝜆𝜈

𝑏 + 𝑎 3𝜁𝐶

1 + 𝜁𝐶

1 + 𝜆𝜈

without proof



Various special cases

This general result contains interesting behaviours in various special cases:

a) case 𝜁 = 1 (LTE: pure absorption lines)

b) case 𝜁 = 0 (extreme non-LTE: pure scattering lines)

c) Schuster Mechanism: Line Emission from Continuum Scattering Layer
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𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝑟𝜈 =
𝑝𝜈 + 𝑎 3𝜆𝜈

𝑏 + 𝑎 3𝜁𝐶

1 + 𝜁𝐶

1 + 𝜆𝜈



Pure absorption lines (LTE)

a) pure absorption in line: 𝜁 = 1

     For strong lines: 𝛽𝜈 ≫ 1

     For grey atmosphere, strongest lines:

                                                                                      a/b=2/3  →  r  0.54 

Thus, in LTE, the residual flux is non-zero even for strong 
absorption lines. However, resonance lines such as Na D 
have R~10-3 – 10-4
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𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
= 1 𝑟𝜈 =

𝑝𝜈+𝑎 3

 𝑏+𝑎 3
=

𝑏

1+𝛽𝜈
+𝑎 3

 𝑏+𝑎 3

Non-zero 
because we see 
Bν at upper level 
with non-zero 
temperature

𝑟𝜈 =
𝑎 3

 𝑏 + 𝑎 3
=

𝑎

 𝑏/ 3 + 𝑎
=

𝐵𝜈 (τ𝜈 = 0)

𝐵𝜈 (τ𝜈 = 1/ 3)
≠ 0

)0()
3

2
(

4

3
)(  


 FS +=



Pure scattering lines (extreme NLTE)

b) pure scattering in line: 𝜁 = 0

     For strong lines: 𝛽𝜈 ≫ 1, 𝑟𝜈 →  0
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𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
=

1

1 + 𝛽𝜈

𝑟𝜈 = 2

𝑏
1 + 𝛽𝜈

+ 𝑎
3

1 + 𝛽𝜈

(1 +
1

1 + 𝛽𝜈
)(𝑏 + 𝑎 3)

Scattering removes all photons 
→ no photon emerges from
surface. Cores of strong 
scattering lines are dark!



𝜁 = 1 (LTE) 𝜁 = 0 (non-LTE)
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The residual flux Rx vs frequency x



Line emission from continuum scattering layer

c) pure scattering in continuum:𝜻𝑪= 0

 If the line opacity is also pure scattering, 𝜻𝑳= 0, then 𝜆𝜈 = 0
 

But for 𝜻𝑳= 1 and for strong lines 𝛽𝜈 ≫ 1
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𝑟𝜈 =
𝑝𝜈 + 𝑎 3𝜆𝜈

𝑏 + 𝑎 3𝜁𝐶

1 + 𝜁𝐶

1 + 𝜆𝜈
𝑝𝜈 ≡

𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

Bν=a+bτc 

𝜆𝜈 ≡
𝜻𝑪 + 𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
=

𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
𝑟𝜈 =

1
1 + 𝛽𝜈

+
𝑎
𝑏

3𝜆𝜈

1 + 𝜆𝜈 

𝜆𝜈 ≡
𝜻𝑪 + 𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
 

𝑟𝜈 =
1

1 + 𝛽𝜈
< 1

always in 
absorption𝑟𝜈 →

3𝑎

2𝑏
For a weak temperature gradient with 
small b/a, can exceed unity, implying a net 
line emission instead of absorption.



Line profiles for Schuster model
298

Scattering makes the continuum source function low near the surface, Sc(0) - Jc(0)≪B(0), 
which implies a weak continuum flux. The line can potentially be brighter, but only if the 
decline from the negative temperature gradient term is not too steep.



Summary
299

 We obtained Transfer Equation including lines and 
taking into account Scattering in lines.

 We solved it using the Milne-Eddington model.

 We then obtained Residual flux of the line.

 Finally, we discussed interesting special cases such 
as pure absorption and pure scattering lines.

 We also tried to explain emission lines applying 
Schuster mechanism for line emission.
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