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Spectral lines



Spectral Lines

(e.g. 2D echelle image of optical Solar spectrum)
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Continuous Energy Distribution

Vega

174

Dwarf 
Stars



Spectra of stars, clusters, galaxies...
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Spectral lines and continuum energy distributions provide temperatures 
and metallicity of individual stars, plus ages of clusters & galaxies 
(since the highest mass stars are visually the brightest).



Spectral Lines

Impact of Spectral Resolution
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We now turn from the 
continuous energy 
distribution to the line 
spectrum. 
Relative intensity r 
(not very common term, 
usually applied to 
emission lines):

𝑟𝜆 =
𝐹𝜆

𝐹𝑐

The line depth R:

The largest R,0 ⎯ 
the central line depth

Line depth
177

Continuum

Fc
F

R

r
r,0

W



 The total area in a spectral line divided by the continuum flux Fc is called the 
line equivalent width, i.e. an integral over a line depth R

 The division by the continuum flux means that this is a measurement of the 
flux in units of the continuum – the equivalent width is identical to a 
rectangular line of width W. 

 EW of absorption lines is positive, emission lines have negative EWs, and are 
measured in Ångströms (at optical wavelengths).

 


 dRd
F

FF
W

c

c

 =
−

=

R

Equivalent Width
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FWHM and FWZI
179

 Other measures of the line width are the Full Width at Half Maximum (FWHM), 
the distance between the half line depth from blue to red, i.e. ()1/2 , 
and the Full Width at Zero Intensity (FWZI), 

FWZI



Line core and the wings 
180

 We denote optically (thin) thick lines as those in which the line core is 
(not) saturated, i.e. reaching zero intensity. In reality, zero intensity is only 
reached for lines in non-LTE.

 The region close to the centre of the spectral line 
is referred  to as the line core, whilst the wings sweep up the local 
continuum.



Example: Solar spectrum
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Strong  spectral lines in the Solar 
spectrum typically have 
equivalent widths W1Å, such 
as the Na I D lines in the yellow. 
In other stars, line equivalent 
widths can reach tens or even 
hundreds of Angstroms. EWs are 
by definition measured relative 
to the continuum strength, 
unlike line fluxes.

5885                  5890                   5895                   5900



Formation of absorption lines
182

 We obtained earlier that the emergent flux from the stellar surface 
is  times the Source function at an optical depth of 2/3:

𝐹𝜆(0) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3) = 𝜋𝐵𝜆(𝑇(𝜏𝜆 = 2/3))

 In spectral lines, the opacity is much larger, thus we see much 
higher layers at these wavelengths. These layers have a lower 
temperature and so B is smaller, leading to a smaller F in the line 
than Fc, the continuum flux in the neighbourhood of the line.

 In the following few lectures, we will study theory of line formation.

LTE
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Spectral line formation



Bound-Bound (free-free) transitions
184

There are 3 basic kinds of line processes associated with bound-bound 
transitions of atoms or ions:

1. Direct Absorption, in which the absorbed photon induces a bound 
electron to go into a higher energy level.

2. Spontaneous Emission, in which an electron in a higher energy level 
spontaneously decays to lower level, emitting the energy difference as a 
photon.

3. Stimulated Emission, in which an incoming photon induces an electron in 
a higher energy level to decay to a lower level, emitting in effect a second 
photon that is nearly identical in energy (and even phase) to the original 
photon.

The probability that the atom will emit (or absorb) its quantum of energy is 
described by Einstein probability coefficients, written as Bij , Aji, and Bji.



Einstein coefficients
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Einstein coefficients concern the probability that a particle spontaneously emits a 
photon, the probability to absorb a photon, and the probability to emit a photon under 
the influence of another incoming photon. Einstein’s coefficients are valid for all 
radiation fields.



Spontaneous emission
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Consider an upper level u and a lower level l separated by an energy hν. 

 The probability that the atom will spontaneously emit its quantum of energy 
within a time dt and in a solid angle d is Aul dt d. 

 The proportionality constant, Aul, is 
the Einstein probability coefficient for 
spontaneous emission [s-1].

 Occurs independently of the radiation field.
 Emits isotropically.

For H, A32=4.4107 s-1. If at time t0=0 there are 
Nu(0) atoms in level u, then at time t  
the population is N u(t)=Nu(0)exp(-Aul t). 
Lifetime = 1/Aul
  



Absorption
187

Consider an upper level u and a lower level l, separated by an energy hν. 

 Photons with energies close to hν cause transitions from levels l to u.
 The probability per unit time for this process 

will evidently be proportional to the mean 
intensity J at the frequency ν.

 Blu J : transition probability of absorption
per unit time.

 The proportionality constant Blu is one of 
the Einstein B-coefficients.



Stimulated emission
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Planck's law does not follow from considering only spontaneous emission and 
absorption. Must also include stimulated emission, which like absorption is 
proportional to the mean intensity J.
 The system goes from an upper level u to a lower level l stimulated by the 

presence of a radiation field (hν  corresponding to the energy difference between 
levels u and l ).

 The energy of the emitted photon is the same as of 
the incoming photon (also direction and phase are 
the same).

 Bul J : transition probability of stimulated emission 
per unit time.

 The proportionality constant Bul is a second Einstein 
B-coefficient.

 The process of stimulated emission is sometimes 
referred to as a process of negative absorption.

 Stimulated emission occurs into the same state 
(frequency, direction, polarization) as the photon 
that stimulated the emission.



Relation between Einstein coefficients
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Einstein’s Coefficients are not independent. To find a relation between them, 
let’s assume strict Thermodynamic Equilibrium (TE), and, for simplicity, 
adopt a 2-level approximation.
In TE, each process is in equilibrium with its inverse, i.e., within one line 
there is no netto destruction or creation of photons (detailed balance)

       n1B12 Jν= n2A21 + n2B21 Jν

𝐽𝜈 =
𝐴21/𝐵21

𝑛1
𝑛2

𝐵12
𝐵21

− 1

𝑛1

𝑛2
=

𝑔1

𝑔2
𝑒h21/𝑘𝑇

    

Transitions 1→2 equal to 2→1
n1, n2: number density of e- in levels 1,2

Thermodynamic equilibrium:
Boltzmann, J = B(T )



Relation between Einstein coefficients
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𝐵𝜈(𝑇) =
𝐴21/𝐵21

𝑔1𝐵12
𝑔2𝐵21

𝑒h21/𝑘𝑇 − 1

Comparison with Planck blackbody radiation:

𝐵𝜈 𝑇 =
𝐴21

𝐵21

𝑔1𝐵12

𝑔2𝐵21
𝑒

h21
𝑘𝑇 − 1

−1

=
2ℎ𝜈21

3

𝑐2
𝑒

h21
𝑘𝑇 − 1

−1

𝐴21

𝐵21
=

2ℎ𝜈21
3

𝑐2  →    𝐴21 = 𝐵21
2ℎ𝜈21

3

𝑐2

𝑔1𝐵12

𝑔2𝐵21
= 1 →  𝑔1𝐵12 = 𝑔2𝐵21

TE: blackbody,  J=B(T )



Einstein coefficients
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Thus, if one of the Einstein Coefficients is known then two other can be 
calculated.

Important:  The Einstein’s coefficients are atomic constants. 
Although the above relations were derived under the conditions of TE, these 
relations hold in any non-TE state.

Total amount of absorbed photons per unit time at a given frequency is

𝑛1𝐵12𝐽𝜈 − 𝑛2𝐵21𝐽𝜈 = 𝑛1𝐵12𝐽𝜈 1 −
𝑛2𝐵21

𝑛1𝐵12
= 𝑛1𝐵12𝐽𝜈 1 −

𝑔1𝑛2

𝑔2𝑛1

Thus, to take into account negative absorption (stimulated emission), 
one must multiply the number of absorbed photons by

1 − 𝑒−h12/𝑘𝑇

(we already did it before)
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Home work:

 When (at what temperatures, wavelengths) is 
spontaneous or induced emission stronger? 

Assume LTE (blackbody)

Comparison of induced and 
spontaneous emission



Lifetime of atom in excited state
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In the absence of collisions and of any other transitions than the ul  one, the mean lifetime of 
particles in state u  is Lifetime = 1/Aul

If at time t0=0 there are Nu(0) atoms in level u, then at time t  the population is

𝑁𝑢 𝑡 = 𝑁𝑢(0)𝑒−𝐴𝑢𝑙𝑡. 

Typical value of Aij is 107- 108 s-1  (for H, A32=4.4107 s-1), so lifetime is ~10-8 s.

However, not all transitions are allowed, some are strictly forbidden!
In practice, strictly forbidden means very low probability of occurrence  ➔ Metastable 
states at which a lifetime is much longer than of the ordinary excited states but shorter than of 
the ground state.

Lifetimes at metastable states can reach several hours and even longer!

Forbidden line transitions are noted by placing square brackets around the atomic species in 
question, e.g. [O III] or [S II]. A semi-forbidden line, designated with a single square bracket, 
such as C III], occurs where the transition probability is about a thousand times higher than for 
a forbidden line.



Einstein A-coefficients for Hydrogen
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Spectral line formation



Line profiles
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All the spectral lines are not monochromatic but have a finite width and a particular 
profile. Width and shape of a line depend directly on atomic transitions and plasma 
environment

Energy levels are not infinitely sharp. An unavoidable source of broadening is due to 
the Heisenberg uncertainty principle: 

dE dt ~h/2π

dt being the timescale of decay (finite lifetime of energy levels).

In each spectral line, photons of different frequencies (but close to central frequency 
0) can be absorbed. 

Let us call φ(ν) the probability that the transition occurs by emitting or absorbing a 
photon with energy hν (emission or absorption line,  ∫φ(ν)dν ≡ 1).

This natural broadening has the form of a Lorentzian function. 



Natural Line Width
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 A spectral line of an atom is formed by a transition of electron between two 
energy levels, whose difference yields the frequency of the line. 

 The bound-bound absorption problem is analogous to the mechanical system 
of a damped, driven harmonic oscillator.

 In the classical picture of an atom, we can consider the electron as being 
bound to the atom. Any force trying to remove it will be counteracted by an 
opposing force. If a force were to pull on the electron and then let go, it would 
oscillate with eigenfrequencies  0=20. 

 The scattering cross-section for a classical oscillator can be written as

𝜎 =
8𝜋

3

𝑒4

𝑚𝑒
2𝑐4

4

(2 − 0
2)2+𝛾2𝜔2

 =2

     where the classical damping constant =2e20
2 /3mec3 =(82e2/3mec3)0

2 

 This is the Lorentz function which is sharply peaked around =0.



Lorentz function (1)
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𝜎 =
8𝜋

3

𝑒4

𝑚𝑒
2𝑐4

4

(2 − 0
2)2+𝛾2𝜔2

 =2 γ =
8𝜋2𝑒2

3𝑚𝑒
2𝑐3

𝜈0
2

𝜎 =
𝑒2

𝑚𝑒𝑐

Τ𝛾 4𝜋

(ν2 − ν0
2)2+( Τ𝛾 4𝜋)2

Note that γ defines the width of the line.



The Classical Damping Line Profile
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Lorentz function (2)
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The Lorentz function        𝜑(𝜈) =
𝐴

(𝜈−𝜈0)2+(𝛾/4𝜋)2

is sharply peaked around  =0 with a maximum of φ(0) =A/(/4)2.

To find the full-width at half maximum (FWHM) we find the value of 1 at which the 
function is ½ its maximum, i.e. φ(1)=1/2 φ(0) and then solve for 
the FWHM  = 1/2=2(1-0):

1

2

𝐴

(𝛾/4𝜋)2
=

𝐴

(𝜈 − 𝜈0)2 + (𝛾/4𝜋)2
 (𝜈 − 𝜈0)2 + (𝛾/4𝜋)2 = 2(𝛾/4𝜋)2

we obtain   |𝜈1 − 𝜈0| = (𝛾/4𝜋)                                  Δ𝜈1/2 = 2 𝜈1 − 𝜈0 = 𝜸/𝟐𝝅
           

i.e.                       (Δ𝜆)1/2 =
𝜆0

2

𝑐
(Δ𝜈)1/2 =

𝜆0
2

𝑐

𝛾

2𝜋
=

4𝜋𝑒2

3𝑚𝑐2 =
4𝜋

3
𝑟𝑒 = 0.00012 Å

Classical electron radius



FWHM
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Δ𝜈𝐹𝑊𝐻𝑀 = 2(|𝜈1/2 − 𝜈0|) = 𝛾/2𝜋



Oscillator Strength
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We obtain the “integrated line scattering cross-section” by integrating over all frequencies

𝜎𝑡𝑜𝑡𝑎𝑙 = න

0

∞

𝜎𝜈𝑑𝜈 =
𝑒2

𝑚𝑒𝑐
න

0

∞
𝛾/4𝜋

(𝜈 − 𝜈0)2 + (𝛾/4𝜋)2
𝑑𝜈 =

𝜋𝑒2

𝑚𝑒𝑐

This classical result predicts a unique  scattering relation for all  transitions. 

The quantum-mechanical  treatment shows that line scattering cross-sections may in fact  differ 
greatly. The customary way of writing this result is via 

𝜎𝑡𝑜𝑡𝑎𝑙 =
𝜋𝑒2

𝑚𝑒𝑐
𝑓𝑖𝑗

where 𝑓𝑖𝑗  is the (dimensionless) oscillator strength of the transition.

Obtained from lab measurements, the Solar spectrum or quantum mechanical calculations 
(e.g. Opacity Project), fij and Einstein A coefficient are related via:

𝐴𝑖𝑗 =
6.67 × 1015

𝜆𝑖𝑗
2 (Å)

𝑔𝑖

𝑔𝑗
𝑓𝑖𝑗



fij for Lyman and Balmer lines
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Only for the strongest transitions does fij approach unity. An electron in the n=2 orbit 
of H is about 5 times more likely to absorb an H photon and make a transition to the 
n=3 orbit, than it is to absorb an H photon and jump to the n=4 orbit. 
For  forbidden  lines, fij ≪1.

 (Å) Line flu glow gup

1215.7 Ly  0.41 2 8

1025.7 Ly  0.07 2 18

972.5 Ly  0.03 2 32

6562.8 H  0.64 8 18

4861.3 H  0.12 8 32

4340.5 H  0.04 8 50
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Spectral line formation



Broadening of spectral lines
205

There are numerous broadening mechanisms which 
influence the apparent shape of spectral lines:

1. Natural broadening     √
2. Thermal broadening   √
3. Microturbulence 

(treated like extra thermal broadening)
4. Collisions (important for strong lines)
5. Isotopic shift, hyperfine splitting (hfs) ,

Zeeman effect

6. Macroturbulence
7. Rotation
8. Instrumental broadening

m
ic

ro
sc

o
p

ic
m

a
cr

o



Natural Line Broadening (1)
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As just noticed above, energy levels of atoms are intrinsically broadened due 
to the Heisenberg uncertainty principle. A decaying state j does not have a 
perfectly defined energy Ej, but rather a superposition of states spread 
around Ej.

The longer the atom is in a state (dt high), the more precisely its energy can 
be measured (dE low). 

A large transition probability leads to a short life in the state (low dt) and a 
large energy uncertainty (high dE).

Thus, the spectral lines are broadened. This type of broadening is called 
natural broadening.



Natural Line Broadening (2)
207

 The resulting absorption coefficients have the same form as the classical case, 
except that the classical damping coefficient  is replaced by , 
the Quantum Mechanical damping constant, the sum of all transition 
probabilities Aij for spontaneous emission.

𝜑𝜈 =
Γ/4𝜋

(𝜈 − 𝜈0)2 + (Γ/4𝜋)2

 𝜑 is the natural or Lorentz profile with FWHM (as before)

Δ𝜆 ൗ1
2

=
𝜆0

2

𝑐
Δ𝜈1/2 =

𝜆0
2

𝑐

Γ

2𝜋
≈ 𝑓𝑖𝑗 × 7 × 10−4 Å

 Still very small, since f  is at most of order unity! 

 Clearly other line broadening mechanisms should dominate.



Thermal (Doppler) broadening
208

 The light emitting atoms in a stellar atmosphere are not at rest but have a thermal 
motion → Maxwellian velocity distribution.

 Because the particles produce Doppler shifts, the line-of-sight velocities have a 
distribution that is an important special case for spectroscopy:

where 𝑣𝑟 is the radial (line of sight) 
velocity component, and 𝑣𝑡ℎ is the 
most probable velocity  𝑣𝑡ℎ = 2𝑘𝑇/𝑚

 The frequency (wavelength) shift 
(linear Doppler effect) is related 
to 𝑣𝑟:

Δ𝜆

𝜆0
=

Δ𝜈

𝜈0
=

𝑣𝑟

𝑐

𝑑𝑁

𝑁
=

1

𝜋
𝑒−( Τ𝑣𝑟 𝑣𝑡ℎ)2 𝑑𝑣𝑟

𝑣𝑡ℎ



Doppler broadening
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 The distribution of  or  values gives us the shape of the absorption 
coefficient.

 Integrating the Maxwell distribution over all velocities, we obtain

𝜑(𝜈) =
𝜈0

𝑐 𝜋Δ𝜈𝐷

exp[ − (𝜈 − 𝜈0)2/Δ𝜈𝐷
2]

     substituting  𝑣𝑟 =
𝜈−𝜈0

𝜈0
𝑐    and   Δ𝜈𝐷 =

𝜈0

𝑐
𝑣𝑡ℎ =

𝜈0

𝑐

2𝑘𝑇

𝑚
     (the Doppler width)

 With ∫0

∞
𝜙 𝜈 = 1, we obtain the Gaussian line profile in terms of the Doppler 

width :

Again, the maximum is at 0.               Temperature dependency:  Δ𝑣th~ 𝑇

𝜑(𝜈) =
1

𝜋Δ𝜈𝐷

𝑒−(𝜈−𝜈0)2/Δ𝜈𝐷
2



Doppler broadening (FWHM)
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 We can again obtain the line FWHM via =1 where 

 (1)=1/2 (0) and then solve for the FWHM  = 1/2=2(1-0)

 This implies that    2 = exp[ (𝜈1 − 𝜈0)2/Δ𝜈𝐷
2]   or   (𝜈1 − 𝜈0)2 = Δ𝜈𝐷

2 ln 2

 Finally,     
Δ𝜈1/2 = 2(𝜈1 − 𝜈0) = 2Δ𝜈𝐷 ln 2 = 1.67Δ𝜈𝐷 = 2.139 × 1012 (𝑇/𝜇)/𝜆0(Å) Hz

 
                                                                                                      (μ is the atomic mass)

 In wavelength units       Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 = 7.1 × 10−7𝜆0(Å) (𝑇/𝜇) Å



Doppler broadening (example)
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 For the Sun, with T~6000K at H: 

    

i.e. in wavelength units    Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 = 7.1 × 10−7𝜆0(Å) (𝑇/𝜇) Å=

Δ𝜈1/2 = 2.139 × 1012 (𝑇/𝜇)/𝜆0(Å) =
𝜇=1



Doppler broadening (example)
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 For the Sun, with T~6000K at H: 

    
i.e. in wavelength units

    or velocity units:

 This is much larger than the natural damping width of the line (10-4 Å), 
but still relatively small relative to some pressure broadening mechanisms 
(will discuss later).

 The atomic mass dependence in the denominator implies 
smaller line widths for metallic lines, e.g. a factor of (56)1/2 smaller for 
iron lines having wavelengths close to H.

Δ𝜈1/2 = 2.139 × 1012 (𝑇/𝜇)/𝜆0(Å) = 2.139 × 1012 6000/1)/6563 = 25.2 GHz

Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 =

(6563 × 10−8)2

3 × 108 25.2 × 109 = 0.36 Å

Δ𝑣1/2 = 𝑐
Δ𝜆1/2

𝜆0
= 3 × 105 km/s

0.36

6562
= 16.5 km/s
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