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W H A T  I S  A  S T E L L A R  A T M O S P H E R E ?

W H Y  S H O U L D  W E  C A R E  A B O U T  I T ?

W H A T  C A N  W E  L E A R N  F R O M  O B S E R V A T I O N S ?

Stellar atmospheres
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What is a stellar 
photosphere?

• Thin, tenuous transition zone between 
(invisible) stellar interior and (essentially 
vacuum) exterior.

• The “photosphere” is the visible disc, whilst 
the “atmosphere” also includes coronae and 
winds.

• In contrast with the interior, where 
convection may dominate, the energy 
transport mechanism of the atmosphere is 
radiation.

• Stellar atmospheres are primarily 
characterized by two parameters: (Teff, log g).
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What is a stellar 
photosphere?

Thin zone between stellar interior and exterior: 
Rsun=a few107 cm, Matm~21021 g=~10-12 M


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Stellar atmospheres: why should we 
care?

The optical depth =1

about 2/3 of the light 
is absorbed

6



Stellar atmospheres?
7

 Stellar interiors are effectively invisible to external observers (apart for e.g. 
astroseismology) so all the information we receive from stars originates from 
their atmospheres. In particular, spectral lines also originate in a stellar 
atmosphere. Understanding how radiation interacts with matter affecting the 
emergent line and continuous spectrum is at the heart of this course.

 Knowledge of plasma physics (e.g. line broadening), atomic physics 
(microscopic interaction between light and matter), radiative transfer 
(macroscopic interaction between light and matter), thermodynamics (LTE 
vs non-LTE), hydrodynamics (velocity fields) yields stellar properties, 
chemical composition, outflow properties.

 Inputs for stellar/galactic evolution and structure.



Recap: what can we learn from observations?
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What can we learn from observations?
9

Please re-read Lecture 1 carefully.

Also, before the next class, 

re-study Lectures 5 & 6 VERY carefully. 
We will be based on that material a lot.



What can we learn from observations?
10

Temperature



What can we learn from observations?
11

Surface gravity and stellar abundances also come  from  spectra:



Spectral Lines

Impact of Spectral Resolution
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Primary star parameters (Teff, log g)

 Primary star parameters are effective temperature Teff and surface 
gravity log g, + chemical composition (metallicity):

 Effective temperature (in K) is defined by L=4pR2Teff
4 

(here L - luminosity, R - stellar radius),  related to ionization.

 Surface gravity (cm/s2), g = GM/R2, related to pressure.

 The Sun has Teff=5777K, log g=4.44 – its atmosphere is only a few 
hundred km deep, <0.1% of the stellar radius.

 A red giant has log g~1 (extended atmosphere), whilst a white dwarf 
has log g~8 (effectively zero atmosphere), and neutron stars have 
log g~14-15
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Morgan-Keenan (M-K) classification scheme 
orders stars via “OBAFGKM” spectral 
classes using ratios of line strength. 

Only Bad Astronomers Forget Generally 
Known Mnemonics

Oh, Be A Fine Girl/Guy, Kiss Me

O-types have the bluest B-V & highest Teff’s. 
OBA stars are early-type star, whilst cooler 
stars are late-type.

Spectral classes are each subdivided into (up 
to) ten divisions – e.g. O2 .. O9, B0, B1 .. B9, 
A0, A1 .. etc

Spectral Types

14
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Luminosity Class classification

 Luminosity class information is often added, based upon spectral line 
widths:                                                              

 Dwarfs have high pressures (large line widths) and supergiants have 
lower pressures (smaller line widths).
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Luminosity Classes and Luminosity

 Line pairs for spectral classification: 
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Continuous Energy Distribution
17

Stars share some properties of black-bodies



Stefan – Boltzmann Law

Blackbody radiation is continuous and isotropic whose intensity 
varies only with wavelength and temperature.

Following empirical (Josef Stefan in 1879) and theoretical 
(Ludwig Boltzmann in 1884) studies of black bodies, there is a 
well-known relation between Flux and Temperature known as 
Stefan-Boltzmann law: 

F=T 4

with =5.6705x10-5 erg/cm2/s/K4 

(Note that Bohm-Vitense refers to “astronomical flux”, H=F/p, as “flux”).

We will return to “different” types of fluxes later.
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Flux
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Magnitude scale

 In practice, we often (historically) measure flux densities F (erg cm-2 s-1) 
from astronomical objects via a logarithmic magnitude scale (like the 
eye and most other human senses).

 See the course “Observational Astronomy” (765640S) for more detail 
(lecture 9), here we discuss it shortly.

 mv – m0 = -2.5 log(Fv/F0)

In the Vega system, the star Vega (A0V) defines the photometric 
“zero point” m0   at all wavelengths (U=B=V=R=I=0.0 mag etc).

20

https://vitaly.neustroev.net/teaching/2023b/Observational_Astronomy_09.pdf


Standard broad-band filters
21

F – a star SED
W() – a filter passband

It is convenient to measure flux 
densities or magnitudes within 
some certain frequency or 
wavelength range. The total energy 
measured is then the integral of the 
source flux times some frequency 
dependent effective filter response. 
This last quantity includes all the 
factors that modify the energy 
arriving at the top of the Earth’s 
atmosphere. 



Colour index

 We can define a colour index as the difference between filters 
relative to Vega e.g.   B – V = mB – mV,   such that stars bluer 
than A0 have a negative B-V colour and stars redder than 
Vega have a positive colour e.g. (B-V)Sun=+0.65 mag.

22

e.g., for Teff<10000K:



More on magnitudes

 We define the absolute (visual) magnitude (MV) as the apparent (visual) 
magnitude of a star of mV lying at a distance of d=10pc: MV=mV (10 pc). 

 Because F d-2

MV-mV= -2.5 log[F (10pc)/F(d )] = -5log(d / 10 pc)=5 - 5 log(d / pc)

 For the Sun (d=4.8510-6 pc), mV=-26.75 and MV=+4.82 mag. 
The “distance modulus”  Mv-mv=31.57 mag

 Because interstellar medium is not completely transparent, we write 
MV – mV= 5 – 5 log(d/pc) – AV.

 The AV term is due to interstellar extinction. 
Visually, AV~ 3.1 E(B-V) for most sight lines.
E(B-V)=B-V – (B-V)o, i.e. the difference between the observed and 
intrinsic B-V colour.
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Interstellar Extinction
24

Extinction is MUCH higher at shorter wavelengths, so IR observations of 
e.g. Milky Way disk probe much further. The extinction to the Galactic 
Centre (d=8kpc) is approx  AV=30 mag (5500A) versus AK=3 mag (2m).

A1200A=10xE(B-V)

AV=3.1xE(B-V)

AK=0.3xE(B-V)
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Illustration of interstellar extinction

V-band  (5500Å)

R-band (7000Å)

I-band (9000Å)

VRI-composite 
of highly reddened 
cluster Wd1 (EB-V~4)



Bolometric Flux
26

 The bolometric flux (erg cm-2 s-1) from a star received at the top of the 
Earth’s atmosphere is the integral of the spectral flux (measured at a 
frequency  or a wavelength ) over all frequencies or wavelengths:

 The luminosity (erg/s) is the bolometric flux from the star integrated 
over a full sphere (at distance d):

 Since the Earth’s atmosphere is opaque to UV and some IR radiation 
one cannot always directly measure the bolometric flux. 



Bolometric Corrections
27

One can calculate bolometric corrections (BC), primarily from 
atmospheric models to correct measured fluxes (usually in the 
V band) for the total (bolometric) flux. Usually expressed in 
magnitudes:

BC= Mbol –MV     with    Mbol=4.74 – 2.5 log(L/L


)  

BC=-0.08 mag for the Sun is a small correction since it emits 
most radiation in the visual. Hot OB stars have very negative 
BC’s, since most of the energy is emitted in the UV, as are cool M 
stars with most energy emitted in the IR.



BC calibrations
28

Bolometric corrections can be 
estimated from intrinsic colours (B-V)o 
as shown here for dwarfs:

Or from the Spectral Type, using 
a Teff  – Spectral Type calibration.

See the next slide...



From Allen’s Astrophysical Quantities (4th edition)

Properties of Main-Sequence Stars
29



Solve a problem
30

A B5V star in the LMC (distance 50kpc) has 
V=13.5 mag, B-V=-0.07 mag. 

What is its bolometric luminosity, relative to the Sun?



Properties of the Planck law

 For increasing temperatures, 
the black body intensity 
increases for all wavelengths. 
The maximum in the energy 
distribution shifts to shorter 
 (longer ) for higher 
temperatures.

 max T  = 2.98978 x107 Å K 

is Wien’s displacement law 
for the maximum I providing 
an estimate of the peak 
emission (max =5175 Å for 
the Sun).
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Rayleigh-Jeans and Wien approximations

32



Color and brightness temperatures
33



Are stars black bodies?
34

Not really

(e.g. UV-optical spectrophotometry of Vega)



Stars do differ from black bodies

The observed flux 
distributions of real stars 
deviate from black body 
curves, as indicated here 
for the UBV colors of 
dwarfs and supergiants. 
This difference is due to 
sources of continuous 
and line opacity in the 
stellar photospheres and 
will be discussed later in 
this course.
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Stars do differ from black bodies
36

Vega



Radiative transfer III

R A D I A T I V E  T R A N S F E R  E Q U A T I O N  I N

P L A N E - P A R A L L E L  A T M O S P H E R E .

L I M B  D A R K E N I N G .
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Solar limb darkening



From lecture 6 (side 166):

The plane-parallel transfer equation 
(for stars with thin photospheres) 

The cos() term is because the optical depth is 
measured along the radial direction x and not 
along the line of sight, i.e    d=-  dx  

We are looking from the outside in, along direction x

39

𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

Transfer Equation for Stars
39



Surface Intensity
40

 To derive the intensity at the surface, we can multiply the plane-parallel 
transfer equation by an integrating factor e-/cos =e-u,

 This can be written as 

 Integrating du from 0 to infinity

𝑑𝐼𝜆(𝜃)

𝑑𝑢
𝑒−𝑢 − 𝐼𝜆(𝜃)  𝑒−𝑢 = −𝑆𝜆𝑒−𝑢

𝑑(𝐼𝜆(𝜃)𝑒−𝑢)

𝑑𝑢
= −𝑆𝜆𝑒−𝑢

𝐼𝜆(0, 𝜃) = න
0

∞

𝑆𝜆 (𝜏𝜆)𝑒−𝑢𝑑𝑢

[𝐼𝜆(𝜃)𝑒−𝑢]0
∞ = − න

0

∞

𝑆𝜆 (𝜏𝜆)𝑒−𝑢𝑑𝑢



Limb darkening
41

Let us assume a linear source function:

We then derive: 

Recall u=/cos( ), so  = u cos( ) and 

Using the standard integral

we obtain

Thus, in the linear approximation for the Source function, the optical depth lies 
between 0 and 1. From the centre of the star we see radiation leaving the star 
perpendicular to the surface: I(0,0)=a+b, whilst at the limb the starlight leaves 
the surface at an angle I(0,90)=a. 

Limb darkening (less light from the limb versus the centre, if b>0).

𝑆𝜆(𝜏𝜆) = 𝑎𝜆 + 𝑏𝜆𝜏𝜆

න
0

∞

𝑢𝑛 𝑒−𝑢𝑑𝑢 = 𝑛!

𝐼𝜆(0, 𝜃) = 𝑎𝜆 + 𝑏𝜆 𝑐𝑜𝑠 𝜃 = 𝑆𝜆(𝜏𝜆 = 𝑐𝑜𝑠 𝜃)

𝐼𝜆 0, 𝜃 = න
0

∞

𝑆𝜆 𝜏𝜆 𝑒−𝑢𝑑𝑢 = න
0

∞

𝑎𝜆 𝑒−𝑢𝑑𝑢 + න
0

∞

𝑏𝜆𝜏𝜆 𝑒−𝑢𝑑𝑢

𝐼𝜆(0, 𝜃) = 𝑎𝜆 න
0

∞

𝑒−𝑢𝑑𝑢 + 𝑏𝜆 cos 𝜃 න
0

∞

𝑢 𝑒−𝑢𝑑𝑢



 This optical image of the Sun 
clearly shows limb darkening. 
We see into the atmosphere 
down to a depth of  =1. 

 Limb darkening exists because 
the continuum source function 
decreases outward:
𝑆𝜆(𝜏𝜆) = 𝑎𝜆 + 𝑏𝜆𝜏𝜆, 
both a and b>0.

 As we look towards the limb, we 
see higher photospheric layers, 
which are less bright. 

42

Solar limb darkening
42



Schematic of limb darkening
43

Schematic illustration of limb darkening – penetration of different lines of sight 
(thick lines) to “unit optical depth” (dashed lines) corresponds to different 
depths in the photosphere, depending on . Radiation seen at 2 is characteristic 
of higher (cooler) layers than the radiation seen at position 1



Linear vs Quadratic source function
44

Up to now we assumed a linear source function. More generally, if:

Then

We still get S(0) at the limb, but a more complicated result at the centre. 
For example, a quadratic term requires the solution of 

At  = 90, =0, whilst at  =0, 1+2a1/a2 providing a2<< a1. 

The ratio of the limb-to-centre intensity is 

     

𝑆𝜆(𝜏𝜆) = ෍

𝑛=0

𝑎𝑛𝜆 𝜏𝜆
𝑛

𝐼𝜆(0, 𝜃) = ෍

𝑛=0

𝐴𝑛 cos𝑛 𝜃 𝐴𝑛 = 𝑎𝑛𝜆 න
0

∞

𝑢𝑛 𝑒−𝑢𝑑𝑢 = 𝑎𝑛𝜆𝑛

𝑆(𝜏𝜆) = 𝑎0𝜆 + 𝑎1𝜆𝜏𝜆 + 𝑎2𝜆𝜏𝜆
2

𝐼𝜆(0, 𝜃) = 𝑎0𝜆 + 𝑎1𝜆 cos 𝜃 + 2𝑎2𝜆 cos2 𝜃

𝑰𝝀(𝟎, 𝟗𝟎)/𝑰𝝀(𝟎, 𝟎) = 𝒂𝟎𝝀/(𝒂𝟎𝝀 + 𝒂𝟏𝝀 + 𝟐𝒂𝟐𝝀)



𝐼𝜆(0, 𝜃)/𝐼𝜆(0,0) = 𝑎0𝜆 + 𝑎1𝜆 cos 𝜃 + 2𝑎2𝜆 cos2 𝜃

The measured centre to limb variation of the solar intensity is

(m) a0 a1 2a2

0.3 0.06 0.74 0.20

0.4 0.14 0.91 -0.05

0.6 0.35 0.88 -0.23

0.8 0.49 0.73 -0.22

1.5 0.56 0.64 -0.20

2.0 0.70 0.48 -0.18

45

Example for Solar Case:
45

(Table 4.17, AQ 4th edition)



Limb darkening is observed to be 
greatest at shorter wavelengths in the 
Sun. The temperature distribution of 
the upper atmosphere of the Sun can 
be obtained from limb darkening 
measurements, carried out via e.g. 
multi-filter images of the Solar 
continuum (between the lines). 

Until recently, the Sun was the only 
star for which limb darkening was 
observed, since one needs to spatially 
resolve the disc (most other stars 
appear as point sources!) to measure 
limb darkening. 

Other methods are now possible.

(Pierce & Waddell 1961).

Centre Limb

46

Wavelength dependence



1. Direct interferometry, via high spatial resolution “imaging” – e.g. 
ESO/VLT interferometry or COAST array, providing a star is very large 
and nearby (a cool supergiant).

2. The light curve due to the gravitational micro-lensing of a background 
(generally Galactic bulge or Magellanic Cloud) star by a foreground 
source (e.g. PLANET team).

3. The light curve from an eclipsing binary system during secondary 
eclipse allows us to study limb darkening of the primary, although non-
trivial! Similar approach followed by extra solar planets occulting 
parent star (e.g. HD209458).

47

Limb darkening for other stars



COAST (Cambridge Optical Aperture Synthesis Telescope) spatial resolution 
of 20-30 milli-arcsec) has made limb darkening observations of 
M supergiant Betelgeuse at different wavelengths (using filters).

7000A 9050A 12900A

0.1 arcsec

48

Limb darkening from interferometry



ESO's Very Large Telescope 
Interferometer (VLTI) is possible 
to achieve a resolution of 0.001 
arcsec or even less. It has resolved 
the disc of the cepheid L Carinae.

49

Limb darkening from interferometry



 Galactic gravitational micro-
lensing occurs when a foreground 
object (lens) passes in front of a 
background star (source). The 
gravitational deflection of light by 
the lens causes the flux from the 
source to be amplified. 

 Microlensing surveys (e.g. 
PLANET, MACHO) have identified 
hundreds of such events towards 
the Galactic bulge and Magellanic 
Clouds.

 One such event, MACHO 97-BLG-
28 was studied to reveal limb 
darkening information for the 
background K giant (Albrow et al. 
1999).

50

Limb darkening from microlensing
50

Thick lines show how much fainter the 
K giant becomes at its edges in the red 
I (left) and blue-green V filter (right). 
If the star emitted a uniform amount 
of light across its whole stellar disk, 
the profile would look like the straight 
solid black line instead



 HD209458 is the first system in 
which extra-solar planet (P=3.5d, 
0.6MJ) has been observed to 
transit its (F8V) primary, allowing 
determination of limb darkening 
(Brown et al. 2001).

 More generally eclipsing binaries 
are problematic due to degeneracy 
with other parameters (Grygar et 
al. 1972). Accurate light curves 
needed for linear limb darkening 
parameters.
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Limb darkening from eclipsing systems
51



 Stars appear darker at their limbs than at 
their disk centers because at the limb we are 
viewing the higher and cooler layers of stellar 
photospheres. 

 Limb darkening derived from state-of-the-art 
stellar atmosphere models systematically fails 
to reproduce recent transiting exoplanet light 
curves from the Kepler, TESS, and JWST 
telescopes – stellar brightness obtained from 
measurements drops less steeply towards the 
limb than predicted by models.

 Possible explanation: magnetic fields on the 
stellar surface are not taken into account:

Kostogryz et al. (2024, NatAst): 
stellar atmosphere models computed with the 
use of a 3D radiative magneto-hydrodynamic 
code show that small-scale concentration of 
magnetic fields on the stellar surface affect 
limb darkening at a level allowing the authors 
to explain the observations.

52

Limb darkening: current state
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F O R M A L  S O L U T I O N  T O  T H E  P L A N E - P A R A L L E L  
T R A N S F E R  E Q U A T I O N .

E D D I N G T O N - B A R B I E R  R E L A T I O N .

G R E Y  A T M O S P H E R E .

Eddington-Barbier relation
53



The plane-parallel transfer equation 
(for stars with thin photospheres) 

The integrated form of the RTE is 
[See D. Gray (page 127-129, 131) for more detail]:

Here, the integration limit c ( which complicates the integral ), replaces  𝐼(0) in 
the parallel-ray transfer equation (Lecture 5, slide 148):

This is because the boundary conditions are different for radiation going in (θ>90°) and coming out (θ<90°) →

𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

Formal Solution to RTE (1)
54

𝐼𝜆 𝜏𝜆 = 0׬

𝜏𝜆 𝑆𝜆 𝑡𝜆 𝑒− 𝜏𝜆−𝑡𝜆 𝑑𝑡𝜆 +𝐼𝜆0𝑒−𝜏𝜆

𝐼𝜆 𝜏𝜆 = − න
𝑐

𝜏𝜆

𝑆𝜆 𝑡𝜆 𝑒−(𝑡𝜆−𝜏𝜆) sec 𝜃 sec 𝜃 𝑑𝑡𝜆



 The full intensity at the position   on the line of sight through the photosphere is

 An important special case occurs at the stellar surface. In this case

where we assumed that the external radiation is completely negligible compared to the 
star’s own radiation. This Equation is the expression we need to compute the spectrum.

 However, since the discs of most stars are spatially unresolved, we must deal with 
flux rather than intensity, so we will not deal with this equation any further.

Formal Solution to RTE (2)
55

=0 outer 
boundary

=max inner 
boundary

−

I

+

I



Emergent Flux
56

𝐹 = 2𝜋 න

−1

1

𝐼(𝜇) 𝜇 d𝜇

Decomposition into two half-spaces:

𝐹 = 2𝜋 න
0

1

𝐼 𝜇 𝜇 d𝜇 + 2𝜋 න
−1

0

𝐼(𝜇) 𝜇 d𝜇

= 2𝜋 න
0

1

𝐼(𝜇) 𝜇 d𝜇 − 2𝜋 න
0

1

𝐼 −𝜇 𝜇 d𝜇 =  𝑭+ − 𝑭−

=cos 

Netto = Outwards – Inwards.

From our lecture 6 (slide 160), the flux is [If there is no azimuthal ( ) dependence in I ]:



Eddington-Barbier relation

Special case: at the surface of a star F − = 0, so that F = F + 

From earlier, assuming a linear source function               yields 

𝐼𝜆(0, 𝜃) = 𝑎𝜆 + 𝑏𝜆 𝑐𝑜𝑠 𝜃 = 𝑎𝜆 + 𝑏𝜆𝜇

In this case we obtain the ”Eddington-Barbier” relation:

𝐹𝜆(0) = 𝜋(𝑎𝜆 + Τ2 3 𝑏𝜆) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3)

The emergent flux from the stellar surface is p times 
the Source function at an optical depth of 2/3

𝑆𝜆(𝜏𝜆) = 𝑎𝜆 + 𝑏𝜆𝜏𝜆

𝐹𝜆 0 = 2𝜋 න
0

1

𝐼𝜆 0, 𝜃  𝜇 𝑑𝜇
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If we assume Local TE (LTE), then

Let us assume the opacity is independent of , i.e. =. We call such a (hypothetical) 
atmosphere a grey atmosphere. Then

The energy distribution of F is that of a blackbody corresponding to the temperature at 
the optical depth  =2/3. 

The black body intensity is defined (following discovery by Max Planck in 1900) as either

                                                                               or

where c=2.99x1010 cm, h=6.57x20-27 erg s, k=1.38x10-16 erg/s. 

Let’s compute the Bolometric flux.

Grey atmosphere (1)

𝐹𝜆(0) = 𝜋𝐵𝜆[𝑇(𝜏 = 2/3)]

𝐹𝜆(0) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3) = 𝜋𝐵𝜆[𝑇(𝜏𝜆 = 2/3)]
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𝐵𝜆(𝑇) =
2ℎ𝑐2

𝜆5

1

𝑒ℎ𝑐/𝜆𝑘𝑇 − 1
𝐵𝜈(𝑇) =

2ℎ𝜈3

𝑐2

1

𝑒ℎ𝜈/𝑘𝑇 − 1



Bolometric flux of Black Body

𝐵𝜈(𝑇) =
2ℎ𝜈3

𝑐2

1

𝑒ℎ𝜈/𝑘𝑇 − 1
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𝐹 = 𝜎𝑇4



If we assume Local TE (LTE), then

Let us assume the opacity is independent of , i.e. =. We call such a (hypothetical) 
atmosphere a grey atmosphere. Then

The energy distribution of F is that of a blackbody corresponding to the temperature at 
the optical depth  =2/3. 

Thus, integrating over 

𝐹(0) = න
0

∞

𝐹𝜆 (0)𝑑𝜆 = 𝜋 න
0

∞

𝐵𝜆 𝑇(𝜏 = 2/3) 𝑑𝜆 = 𝜎𝑇4(𝜏 = 2/3)

From Stefan-Boltzmann, F (0)=Teff
4, by definition, we find Teff =T ( =2/3). 

The “surface” of a star, which has temperature Teff  (by definition) is not at the very top 
of the atmosphere (where  =0), but lies deeper down, at =2/3. 

This can be considered as an average point of origin from the observed photons.

Grey atmosphere (2)

𝐹𝜆(0) = 𝜋𝐵𝜆[𝑇(𝜏 = 2/3)]

𝐹𝜆(0) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3) = 𝜋𝐵𝜆[𝑇(𝜏𝜆 = 2/3)]
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Summary

 Solution to plane-parallel transfer equation at surface 
explains limb darkening in Sun.

 Limb darkening in other stars can be estimated from 
interferometry, eclipsing binaries, microlensing.

 Eddington-Barbier relation.

 Grey atmosphere.

 Assuming a grey atmosphere , we found that the “surface” of a 
star, which has temperature Teff  (by definition) is not at the 
very top of the atmosphere (where  =0), but lies deeper 
down, at  = 2/3. 
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G R E Y  A T M O S P H E R E

T H E R M A L  ( R A D I A T I V E )  E Q U I L I B R I U M

T H E  D E P T H  D E P E N D E N C E  O F  T H E  S O U R C E  F U N C T I O N

 E D D I N G T O N  A P P R O X I M A T I O N  

T E M P E R A T U R E  S T R U C T U R E  O F  T H E  G R E Y  A T M O S P H E R E

Radiative Equilibrium



Grey atmosphere
63

• Above we assumed that the opacity can be independent of , 
i.e. =. We call such a (hypothetical) grey atmosphere. 

• In the theory of stellar atmospheres, much of the technical 
effort goes into iteration schemes using equations of radiative 
equilibrium (which we will discuss today) to find the source 
function S. 

• Often, a starting point for such iterations is the grey case.



Thermal (radiative) equilibrium

 In stellar atmospheres, radiation dominates transfer of energy, so we can discuss 
(three) conditions of radiative equilibrium, which can be used to derive the 
temperature structure in the photosphere. 

 The radiation we see from the Sun comes from a layer of geometrical height of a 
few hundred km.

 In a column of 100 km height and 1 cm2 cross-section there are 1024 particles 
(since n ~1017/cm3 in Sun), each of which has a thermal energy of 3kT/2 
(10-12 erg). The total thermal energy of this column is therefore 1012 erg/cm2. 
The observed radiative energy loss (per cm2) of the solar surface is 
F


=6.3x1010 erg cm-2 s-1. 

 If the Sun shines at a constant rate, the energy content of the solar photosphere 
can only last for 15 seconds without being replenished from below. 

 Exactly the same amount of energy must be supplied or else the photosphere 
would quickly change temperature. 
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First equation of radiative equilibrium

 Since this does not happen, dF/dt =0 or dF/dx =0 or dF/d =0, i.e. the total flux 
must be constant at all depths of the photosphere (conservation of energy) – 
the 1st equation of radiative equilibrium

𝐹 𝑥 = 𝐹 0 = 𝑐𝑜𝑛𝑠𝑡 = 𝜎𝑇𝑒𝑓𝑓
4

 When all the energy is carried by radiation, we have

𝐹 𝑥 = න
0

∞

𝐹𝜆 𝜏𝜆 𝑑𝜆 = 𝐹(0)

Although the shape of F can be expected to change very significantly with depth, 
its integral remains invariant.

 If other sources of energy transport are significant, then a more general 
expression of flux constancy must be applied:

Φ 𝑥 + න
0

∞

𝐹𝜆 𝜏𝜆 𝑑𝜆 = 𝐹(0)

(x) is, for example, the convective flux
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Radiative equilibrium
66

 We may integrate the plane-parallel transfer equation over solid angle . 

     Based on the definition of mean intensity and flux: 

 Finally, assuming S to be isotropic we obtain,

1

4𝜋

𝑑

𝑑𝜏𝜆
[𝐹𝜆(𝜏𝜆)] = 𝐽𝜆(𝜏𝜆) − 𝑆𝜆(𝜏𝜆)

න cos 𝜃
𝑑𝐼𝜆(𝜏𝜆, 𝜃)

𝑑𝜏𝜆
𝑑𝜔 = න𝐼𝜆(𝜏𝜆, 𝜃) 𝑑𝜔 − න𝑆𝜆(𝜏𝜆) 𝑑𝜔

𝑑

𝑑𝜏𝜆
[𝐹𝜆 𝜏𝜆 ] = 4𝜋[𝐽𝜆 𝜏𝜆 ] − න𝑆𝜆(𝜏𝜆) 𝑑𝜔

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔  and 𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔



Second equation of radiative equilibrium
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 In the grey case, for which the opacity   is independent of wavelength

1

4𝜋

𝑑

𝑑𝜏
𝐹(𝜏) = −𝑆(𝜏) + 𝐽(𝜏) = 0

     Since dF/d =0,     the Source function must be equal the mean intensity J.
 If the atmosphere is not grey, which is the situation for most stars, let’s incorporate the 

opacity  into the RHS, and integrating over wavelength

1

4𝜋

𝑑

𝑑𝑠
න

0

∞

𝐹 𝜏𝜆 𝑑𝜆 = න
0

∞

(−𝜅𝜆𝑆𝜆 + 𝜅𝜆𝐽𝜆)𝑑𝜆 = 0

Since dF/ds =0, we get the radiative balance equation (energy conservation)

න
0

∞

𝜅𝜆 𝑆𝜆𝑑𝜆 = න
0

∞

𝜅𝜆 𝐽𝜆𝑑𝜆

 This is the second equation of radiative equilibrium and can be understood as the total energy 
absorbed (RHS) must equal the total energy re-emitted (LHS) if no heating or cooling is 
taking place.

𝜏𝜆 = න
0

𝑆

𝜅𝜆𝜌𝑑𝑠



Third equation of radiative equilibrium
68

The third radiative equilibrium condition is obtained by multiplying the transfer 
equation by cos  and integrating over solid angle and then wavelength

ර cos2 𝜃
𝑑𝐼𝜆(𝜏𝜆, 𝜃)

𝑑𝜏𝜆
𝑑𝜔 = ර cos 𝜃 𝑑𝐼𝜆 𝜏𝜆, 𝜃 𝜔 − ර cos 𝜃 𝑆𝜆 𝜏𝜆, 𝜃 𝑑𝜔

cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆

𝐾𝜆(𝜏𝜆) =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔 𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔 0 (S is isotropic)

4𝜋 න
𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 = න𝐹𝜆 𝑑𝜆 = 𝐹(𝜏)

න
0

∞ 𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 =

𝐹(𝜏)

4𝜋The third radiative equilibrium condition: 



Equations of radiative equilibrium
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 All the three radiative equilibrium conditions are not independent. 
S that is a solution of one will be the solution of all three.

 The flux constant F (0) is often expressed in terms of an effective 
temperature 𝐹 0 = 𝜎𝑇𝑒𝑓𝑓

4 .

 When model photospheres are constructed using flux constancy as a 
condition to be fulfilled by the model, the effective temperature becomes 
one of the fundamental parameters characterizing the model.

 In real stars, energy is created or lost from the radiation field through e.g. 
convection, magnetic fields, 
plus in supernovae atmospheres energy conservation is not valid 
(radioactive decay of Ni to Fe), 
so the energy constraints are more complicated in reality.



Recap: Equations of radiative equilibrium
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 The 1st equation of radiative equilibrium:

𝐹 𝑥 = 𝐹 0 = 𝑐𝑜𝑛𝑠𝑡 = 𝜎𝑇𝑒𝑓𝑓
4

      i.e. the total flux must be constant at all depths of the photosphere (conservation of energy):
                                                           dF/dt =0 or dF/dx =0 or dF/d =0

 The 2nd  equation of radiative equilibrium: 
the total energy absorbed (RHS) must equal the total energy re-emitted (LHS) if no heating or cooling is 
taking place:

න
0

∞

𝜅𝜆 𝑆𝜆𝑑𝜆 = න
0

∞

𝜅𝜆 𝐽𝜆𝑑𝜆

 The 3rd radiative equilibrium condition:

න
0

∞ 𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 =

𝐹(𝜏)

4𝜋

 All the three radiative equilibrium conditions are not independent. 
S that is a solution of one will be the solution of all three.



The depth dependence of the source function 
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 In a grey  atmosphere, with 𝐾(𝜏) = 0׬

∞
𝐾𝜆 𝑑𝜆,  the 3rd equation implies:

 We can differentiate this, and insert our earlier result:

 Integration of the equation with respect to  gives    K()=c1+c2 

                                                                                            where dK/d = c1 = F/4p

 For a given F, we now have two equations, [1] and [2], to determine the three 
unknowns: J, S and K (or c2). We need an additional relation between two of these 
variables in order to determine all three. 

𝑑𝐾(𝜏)

𝑑𝜏
=

𝐹(𝜏)

4𝜋

𝑑2𝐾(𝜏)

𝑑𝜏2
=

1

4𝜋

𝑑𝐹(𝜏)

𝑑𝜏
= 𝐽(𝜏) − 𝑆(𝜏) = 0

a new unknown function K()

[1]

[2]



Eddington approximation (1)
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 Previously we have seen that for the determination of the flux the anisotropy in 
the radiation field is very important because in the flux integral the inward-going 
intensities are subtracted from the outward-going ones, due to the factor  cos.

 But for K, a small anisotropy is unimportant because the intensities are multiplied 
by the factor cos2 , which does not change sign for inward and outward radiation. 

 To evaluate K or c2, we can approximate the radiation field by an isotropic 
radiation field of the mean intensity J: I = J (by definition). From the definition of 
K we obtain

4𝜋 𝐾𝜆 = ර𝐼𝜆 𝜏𝜆, 𝜃 cos2 𝜃 𝑑𝜔 = 𝐽𝜆 𝜏𝜆 රcos2 𝜃 𝑑𝜔 =
4𝜋

3
𝐽𝜆(𝜏𝜆)

      or after division by 4p,

This approximation for the K-function is known as 
the Eddington approximation.

𝐾𝜆(𝜏𝜆) =
1

3
𝐽𝜆(𝜏𝜆)

d = sinθ dθ dφ



Eddington approximation (2)
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 Inserting the Eddington approximation into the above equation
we find

 Since the mean intensity J equals the source function S in a grey atmosphere, 
integrating the latter result we obtain

 From the conditions of radiative equilibrium, we finally obtained the law for the 
depth dependence of the source function (for a grey atmosphere assuming 
the Eddington approximation). We can evaluate C using boundary condition for 
the known emerging flux (there is no flux going into the star), plus we assume the 
outward intensity does not depend upon  :

𝑑𝐾(𝜏)

𝑑𝜏
=

𝐹(𝜏)

4𝜋

𝑑𝐾(𝜏)

𝑑𝜏
=

1

3

𝑑𝐽(𝜏)

𝑑𝜏
=

𝐹(𝜏)

4𝜋
= 𝑐1

𝑑𝐽(𝜏)

𝑑𝜏
=

3

4𝜋
𝐹(𝜏)

𝑆(𝜏) =
3

4𝜋
𝜏𝐹(0) + 𝐶 = 𝐽(𝜏)

𝐹 𝑥 = 𝐹 0 = 𝑐𝑜𝑛𝑠𝑡



Eddington approximation (3)
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 Boundary condition: there is no flux going into the star, 
i.e. I (0,) = I– = 0 for p/2 <  < p 

 We also assume that the outward intensity does not depend upon , 
i.e. I (0,)= I+ = const  for  0 <  < p/2

 It gives 

 Hence C=J(0)= F(0)/2p so:

  To find the depth dependence of T, we also need to assume LTE.

𝐽(0) =
1

2𝜋
𝐼+ =

1

2𝜋
𝐹(0)

𝑆(𝜏) =
3

4𝜋
𝜏𝐹(0) + 𝐶 = 𝐽(𝜏)

𝑆(𝜏) =
1

𝜋
(
3

4
𝜏 +

1

2
)𝐹(0)

𝑆(𝜏) =
3

4𝜋
(𝜏 +

2

3
)𝐹(0)



In LTE, the source function is the Planck function, S ()=B ()=T 4/p

Recall that F(0)=T 4eff, by definition, so

                                                                 or

We derived the temperature dependence on optical depth. 
Note T ( =2/3) = Teff as we obtained earlier, and T4(=0)=Teff

4 / 2

A complete solution of the grey case, using accurate boundary conditions, without 
Eddington approximation, leads to a solution only slightly different from this, usually 
expressed as 

Here q() is a slowly varying function (Hopf function), with
                                                                               𝑞 = Τ1 3 = 0.577 at  =0 to q=0.710 at  = . 

𝐵(𝜏) =
𝜎

𝜋
𝑇4(𝜏) =

3

4𝜋
(𝜏 +

2

3
)𝐹(0)

Temperature structure of the grey 
atmosphere

𝑇4(𝜏) =
3

4
𝜏 + 𝑞 𝜏 𝑇𝑒𝑓𝑓

4

1

𝜋
𝜎𝑇4(𝜏) =

3

4𝜋
(𝜏 +

2

3
)𝜎𝑇𝑒𝑓𝑓

4 𝑇4(𝜏) =
3

4
(𝜏 +

2

3
)𝑇𝑒𝑓𝑓

4

𝑆(𝜏) =
3

4𝜋
(𝜏 +

2

3
)𝐹(0)



Comparison between T( ) in 
the Solar atmosphere using the 
simplifying Eddington 
assumption (solid) versus the 
exact grey case (dashed) using 
the Hopf function, q( ):

Grey Temperature Structure

𝑞(𝜏) ≈ 0.710 − 0.133𝑒−2𝜏
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 How good an approximate is the 
grey atmosphere? Next we must 
look at the frequency dependence 
of the sources of opacity.

 The grey temperature distribution 
is shown here versus the 
observed Solar temperature 
distribution as a function of 
optical depth  at 5000Å (D. Gray, 
Table 9.2)

 The poor match is because the 
opacity is wavelength dependent, 
as we shall see next lecture.

How realistic is this?
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Summary

 Three equations of radiative equilibrium can be derived: 
(a) constant flux with depth; 
(b) energy absorbed equals energy emitted; 
(c) the K-integral is linear in .

 From these, the grey temperature distribution T() may be 
derived, assuming: 
(a) the Eddington approximation and 
(b) LTE, in reasonable agreement with the exact case.

 On the next lecture, we will discuss LTE in more detail.
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M A X W E L L I A N  V E L O C I T Y  D I S T R I B U T I O N

B O L T Z M A N N  E Q U A T I O N

S A H A  E Q U A T I O N

Local Thermodynamic Equilibrium 
(LTE)



Thermodynamic Equilibrium (TE)
80

 Interaction of radiation and matter is the most important 
physical process in stellar atmospheres.

 To find 𝑰𝝀 we need to know 𝛼𝜆and  (or k  and j) – absorption 
and emission coefficients.

 To find 𝛼𝜆and , density ρ, temperature T, and chemical 
composition X are not enough. We need to know 
distributions of atoms over levels and ionization states, 
which depend on radiation 𝑰𝝀.

 In TE, ρ, T, and X fully determine 𝛼𝜆and .



Local Thermodynamic Equilibrium
81

In Thermodynamic Equilibrium:

1. All particles have Maxwellian distribution in velocities 
(with the same temperature T ).

2. Atom populations follow Boltzmann law ( same T ).

3. Ionization is described by Saha formula ( same T ).

4. Radiation intensity is given by the Planck function ( same T ).

5. The principle of detailed equilibrium is valid (the number of direct 
processes = number of inverse processes).

In Local thermodynamic equilibrium (LTE), 
1-3 are applied locally.

The radiation spectrum can in principle be very far from 
Planck function.



LTE
82

In the study of stellar atmospheres, the assumption of 
Local Thermodynamic Equilibrium (LTE) is described by:

1. Electron and ion velocity distributions are Maxwellian.

2. Excitation equilibrium is given by Boltzmann equation 
(introduced today).

3. Ionization equilibrium is given by Saha equation 
(introduced today). 

4. The source function is given by the Planck function

𝑆𝜆 = 𝐼𝜆 = 𝐵𝜆(𝑇)     i.e. Kirchoff’s law    𝑗𝜆 = 𝜅𝜆𝐵𝜆(𝑇)



Is LTE a valid assumption?
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 For LTE to be valid, the photon and particle mean free paths 
need to be much smaller than the length scale over which these 
temperature changes significantly. 

 Radiation cannot play a role in defining atom populations and 
ionization state. Collisions should dominate. 

 Generally, when collisional processes dominate over radiative 
processes in the excitation and ionization of atoms, the state of 
the gas is close to LTE. 

 Consequently, LTE is a good assumption in stellar interiors, 
but may break down in the atmosphere. If LTE is no longer 
valid, all processes need to be calculated in detail via non-LTE. 
This is much more complicated, but needs to be considered in 
some cases (see later in course).



Mean Free Path
84

 In the Sun, the characteristic 
distance over which the 
temperature varies (the 
temperature scale height) 
is 500km. 

 How does this scale 
compare with the average 
distance travelled by an 
atom before hitting 
another atom? 

 Two hydrogen atoms will 
collide if their centres pass 
within a radius of 2 Bohr 
radii (2ao) of each other. The 
collision cross-section of the 
H atom is 
 =p(2ao)=3.5x10-16 cm2. 

 The mean free path between 
collisions is λ=1/( n(H)).



Mean free path in the solar photosphere
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 The density of the Solar 
photosphere is  = 2.5x10-7 
g/cm3 so the number of H 
atoms/cm3 is 
n(H)=/mH=1.5x1017 cm3 
where mH is the mass of the 
H atom. 

 Then the mean free path 
between collisions is 
λ=1/(n(H))=0.02 cm. i.e. 
atoms are confined within a 
limited volume of space in 
the photosphere at 
effectively fixed temperature 
(relative to the temperature 
scale height).

In the upper layers,  → 0, λ , radiation dominates over collisions → out of LTE



Mean Free Path in the Sun

Since the photosphere is the layer visible from 
Earth, photons must be able to escape freely into 
space. After ~1021 scatterings and re-emissions 
(thousands years!) from the centre. 
Calculate the time needed for a photon to escape!



The Random Walk 
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 As the photons diffuse upward 
through the stellar material, they 
follow a haphazard path called a 
random walk. Figure shows a 
photon that undergoes a net 
vector displacement d as the result 
of making a large number N of 
randomly directed steps, each of 
length l (=λ, the mean free path). 

 It can be shown that for a random 
walk, the displacement d is related 
to the size of each step, l, by

𝑑 = 𝑙 𝑁.
 This implies that the distance from 

the cenre of a star to the surface is
D= l  N

 This is why the transport of 
energy through a star by radiation 
may be extremely inefficient. 



LTE
88

As noticed above, LTE is described by:

1. Maxwellian electron and ion velocity distributions.

2. Excitation equilibrium given by Boltzmann equation.

3. Ionization equilibrium given by Saha equation. 

Let’s discuss them.



Maxwellian velocity distribution

Gas pressure is produced by the motions of the gas 
particles.  The velocities of particles are distributed 
in a Maxwellian distribution (also called  
the Maxwell–Boltzmann distribution).

Because the particles produce Doppler shifts, the line-of-sight velocities 
have a distribution that is an important special case for spectroscopy:

where vR is the radial (line of sight) velocity component. 
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Maxwellian velocity distribution

The maximum of the 
speed distribution 
occurs at v1 (the most 
probable velocity):

The average velocity, 
v2, is

The root mean square 
velocity, v3, is
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Boltzmann equation

For excited levels u  and l of e.g. atomic hydrogen, the Bolzmann equation 
relates their population (occupation) numbers as follows:

𝑵𝒖

𝑵𝒍
=

𝒈𝒖

𝒈𝒍
𝒆−(𝑬𝒖−𝑬𝒍)/𝒌𝑻

where ul =Eu–El  is the energy difference between the levels, gu & gl are their 
statistical weights (see next slide), k=8.6174x10-5 eV/K is the Boltzmann constant. 

1

6
5
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Eion

bound states, „levels“

free states

ionization limit
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In the “ground state” 
(n=1), “first excited 
state” (n=2), and all 
other excited states of 
H more than one 
quantum state may 
have the same energy. 

The number of  these 
for orbital n is the 
statistical weight, gn, 
(also known as the 
degeneracy). 

Boltzmann equation may also be written as:

log
𝑁𝑢

𝑁𝑙
= log

𝑔𝑢

𝑔𝑙
−

5040

𝑇
𝜒𝑢𝑙(𝑒𝑉)  = 5040/T



Hydrogen
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For H, orbital n has a statistical weight 
of gn=2n2 – the various permutations for 
n=1 and n=2 are listed here, with statistical 
weights g1=2 and g2=8, respectively.

l=0…n-1 azimuthal quantum number
ml=magnetic quantum number with -l≤ml ≤ l
ms=electron “spin” angular momentum ±1/2

Transition energy between levels u and l:

𝜒𝑢𝑙 = 𝐶
1

𝑢2
−

1

𝑙2

where C=ion=-13.6 eV



An exceptionally high T is required for a significant number of H atoms to have 
electrons in their 1st excited states. The Balmer lines (involving an upward transition 
from n=2 orbital) reach a peak strength at spectral class A (≈10000K) 

so why do the Balmer lines diminish in strength at higher temperatures? 

We need Saha equation to answer this question.

Balmer lines
94



Balmer lines
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The degree of ionization of any atom or ion can be obtained from the Saha equation, which can 
be derived from the Boltzmann formula if we extend it to states with positive energies, i.e., 
to free electrons with the appropriate statistical weights 
(the upper state is now an ion plus free electron, with energy ion+1/2mev2).

The statistical weight of the ion in the ground state plus electron is the product of the statistical 
weight of the ion g1

+ and the statistical weight of the electron ge:       gion+e = g1
+ ge

The degree of ionization of an atom 
96

ionization limit



The statistical weight of the ion in the ground state plus electron is the product of the 
statistical weight of the ion g1

+ and the statistical weight of the electron ge: 

gion+e = g1
+ ge

The (differential) statistical weight of the electron, ge, i.e. the number of available 
states in interval (v,v+dv) is (from quantum mechanics)

𝑔𝑒 =
1

𝑁𝑒

8𝜋𝑚𝑒
3𝑣2𝑑𝑣

ℎ3

The 1/Ne factor comes from the space volume element. It is the volume per electron.

Inserting this into Boltzmann’s equation, we arrive at the Saha equation:

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3 𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

This relates the ground state populations of the atom and ion. 

The Saha Equation
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The Saha equation (Meghnad Saha 1920):

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

This relates the ground state populations of the atom and ion. 

To derive the ratio of the total number of ions (N+) to the total number of 
atoms (N0) we can use the conventional Boltzmann formula for each level n 
of the atom and ion, Nn/N1 and Nn

+/N1
+ i.e..

𝑁𝑛

𝑁1
=

𝑔𝑛

𝑔1
𝑒−𝜒𝑛/𝑘𝑇  

𝑁𝑛
+

𝑁1
+ =

𝑔𝑛
+

𝑔1
+ 𝑒−𝜒𝑛

+/𝑘𝑇

The Saha Equation
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Partition function (1)
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If N0 is the sum of all neutral particles in their different quantum states:.

We find:

where we have introduced u0 , the partition function of the atom. This is the 
weighted sum of the number of ways it can arrange its electrons with the 
same energy - e.g. all H is in the ground state for the Solar case, so u02 
(the ground state statistical weight). Similarly for the ion, 

 𝑢+(𝑇) = 𝑔1
+ + ෍

𝑛=2

∞

𝑔𝑛
+ 𝑒−𝜒𝑛

+/𝑘𝑇

For H+, u+=1, since no electrons left. 

𝑁0 =
𝑁1

0

𝑔1
(𝑔1 + ෍

𝑛=2

∞

𝑔𝑛 𝑒−𝜒𝑛/𝑘𝑇) =
𝑁1

0

𝑔1
𝑢0(𝑇)

𝑁0 = 𝑁1
0 + ෍

𝑛=2

∞

𝑁𝑛
0 = 𝑁1

0 +
𝑁1

0

𝑔1
෍

𝑛=2

∞

𝑔𝑛 𝑒−𝜒𝑛/𝑘𝑇

𝑁+ = 𝑁1
0 +

𝑁1
+

𝑔1
+ 𝑢+(𝑇)



Partition function (2)
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If we multiply N1
+/N1

0 from earlier by N+/N1
+ and N1

0/N0 we again obtain 
the Saha equation:

𝑁+𝑁𝑒

𝑁0
=

2𝑢+

𝑢0

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇 = 4.83 × 1015

𝑢+

𝑢0
𝑇3/2𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

In logarithmic form Saha equation can be written as:

log
𝑁+

𝑁0
= log

𝑢+

𝑢0
+ log 2 +

5

2
log 𝑇 − 𝜒𝑖𝑜𝑛Θ − log 𝑃𝑒 − 0.48

where ion is measured in eV, =5040/T and the electron pressure Pe  is related 
to the electron density via the ideal gas law (Pe=NekT). In stellar atmospheres, 
Pe lies in the range 1 dyn/cm2 (cool stars) to 1000 dyn/cm2 (hot stars). 

High temperature favours ionization, high pressure favours recombination. 

Note that 1dyn/cm2=0.1N/m2 (SI units), so for SI calculations the final constant is -1.48 instead of -0.48



Partition functions (Gray App D2)
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 = 5040/T



log 𝑢 (𝑇) = 𝑐0 + 𝑐1 log Θ + 𝑐2 log2 Θ + 𝑐3 log3 Θ + 𝑐4 log4 Θ

Partition functions (Gray, old edition)

 = 5040/T

102



Ionization Potentials
103



We can use the Saha equation to study the degree of ionization of H in general in 
stellar photospheres. The fraction of ionized hydrogen to the total is defined below. 
We find that H switches from mostly neutral below 7000K to mostly ionized above 
11000K for typical Ne.  This allows us to understand why hydrogen lines are 
strongest in A-type stars, with temperatures of 7500-10000K.

Degree of ionization of H in stars
104

𝐻+

𝐻
=

𝐻+

𝐻0 + 𝐻+
=

Τ𝐻+ 𝐻0

1 + Τ𝐻+ 𝐻0

𝑁+𝑁𝑒

𝑁0 = 2.4 × 1015 𝑇3/2𝑒−158000/𝑇

Using 1eV per particle, the hydrogen is
heated from 0 to 104 K. Supplying 13.6 eV
more, the temperature increases only up to
2104 K. Ionization is an extremely energy
consuming process. Ionization happens
within a very small temperature interval.



Hydrogen:

Iron:

Degree of ionization in stars
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As temperature increases, ionization 
occurs rather abruptly. In a stellar 
photosphere, elements exist mainly in 
just two ionization stages.



From today’s first example, a very high 
T  was required to populate level n=2 
of H relative to the ground state. We 
can now use the Boltzmann & Saha 
equations to measure H(n=2)/H(total) 
as a function of T.  For increasing T, the 
n=2 population increases due to the 
Boltzmann equation, reaching a 
maximum value around 10,000K 
(equivalent to A spectral type) and 
then reduces as H becomes mostly 
ionized. This is why A stars have 
strong Balmer lines.

Strong Balmer lines in A stars – why?
106

Note: He in stellar atmospheres complicates 
this calculation since ionized He provides 
excess electrons with which H ions can 
recombine, so it takes higher temperatures 
to achieve the same degree of ionization.



Strong lines in Solar photosphere
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Ca II in the Sun
108

The photosphere of the Sun has only two calcium atoms for every million 
H atoms, yet the Ca II H and K lines (produced by the ground state of 
singly ionized calcium, Ca+) are stronger than the Balmer lines of H 
(produced by the 1st excited state of neutral H). Why?



Saha-Boltzmann applied to Ca 
109

From the Saha equation we can find that H is essentially neutral in the Solar photosphere: 

Pe=200 dyn/cm2, χion=13.6 eV,  =5040/(T=5777)=0.872, the partition function u0=2, u+=1 (i.e. log u+=0)

log
𝑁+

𝑁0
= log 𝑢+ − log 𝑢0 + log 2 +

5

2
log 𝑇 − 𝜒𝑖𝑜𝑛𝛩 − log 𝑃𝑒 − 0.48 = −5.235 →  𝑁+/𝑁0 ≈ 0.0006%

yet from the Boltzmann formula log
𝑁𝑢

𝑁𝑙
= log

𝑔𝑢

𝑔𝑙
−

5040

𝑇
𝜒𝑢𝑙(𝑒𝑉):   H(n=2)/H(n=1)=5x10-9  

i.e. very little H is available to produce Balmer absorption lines. 

For Ca, ion=6.1 eV, and partition functions may be determined from tables (Slide 104) via

log 𝑢 (𝑇) = 𝑐0 + 𝑐1 log Θ + 𝑐2 log2 Θ + 𝑐3 log3 Θ + 𝑐4 log4 Θ

For =5040/T=0.872, the partition function of neutral Ca
log 𝑢0 (𝑇) = 0.075 − 0.757 log Θ + 2.58 log2 Θ + 3.53 log3 Θ − 1.65 log4 Θ

i.e. u0=1.3.  Similarly, u+=2.3. 

log
Ca+

Ca0
= log

2.3

1.3
+ log 2 + 9.40 − 5.34 − 1.18 − 0.48 = +2.95 →  Ca+/Ca0 ≈ 900

Essentially all Calcium is singly ionized.
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Essentially all Calcium is singly ionized. 

N(Ca+) in the first excited state relative to 
the ground state (g1=2, g2=4, =3.12eV) is 
1/265 from Boltzmann eqn, so nearly all 
Calcium in the Sun’s photosphere is in the 
ground state of Ca+. 

Combining these results: 

N(Ca+
g.s.)/N(Hn=2)= N(Ca+

g.s.)/N(Ca) x N(Ca)/N(H) x N(H)/N(Hn=2)=400

There are 400 times more Ca+ ions with electrons in the ground-state (which 
produce the Ca II H&K lines) than there are neutral H atoms in the first excited state 
(which produce Balmer lines). 

The Ca II lines in the Sun are so strong due to T dependence of excitation and 
ionization (not high Ca/H abundance).

Saha-Boltzmann applied to Ca 



More from Saha
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 Another observational effect that can be understood using the Saha 
equation is that supergiants and giants have lower temperatures 
than dwarfs of the same spectral type.

 Spectral classes are defined by line ratios of different ions, e.g. 
He II 4542A / He I 4471 for O stars. At higher temperatures the 
fraction of He II will increase relative to He I, so the above ratio will 
increase. 

 However, supergiants have lower surface gravities (or pressure) 
than main-sequence stars, so from Saha equation a lower Pe at the 
same temperature will give a higher ion fraction, N+/N 0

 Assuming a given spectral class corresponds to a fixed ratio N+/N 0, 
a star with a lower pressure can have a lower Teff  for the same ratio 
and spectral class



Summary
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 LTE = Maxwell + Boltzmann + Saha.

 Boltzmann equation describes degree of excitation of an atom or 
ion, e.g. N (Hn=2)/N (Hn=1).

 Saha equation describes degree of ionization of successive ions, e.g. 
N (He+)/N(He0) or N (He2+)/N (He+).

 The Partition function is the weighted sum of the number of ways 
an atom or ion can arrange its electrons with the same energy.

 Ionization is an extremely energy consuming process. Ionization 
happens within a very small temperature interval.

 Saha-Boltzmann explains the spectral type (or temperature) 
dependence of lines in stellar atmospheres, e.g. Strongest Balmer 
series at spectral type A and strong CaII lines in Solar-type stars.



Summary from the last lecture

In the study of stellar atmospheres, the assumption of LTE is described by:

 LTE = Maxwell + Boltzmann + Saha:

 Boltzmann equation describes degree of excitation of an atom or ion, 
e.g. N (Hn=2)/N (Hn=1).

 Saha equation describes degree of ionization of successive ions, e.g. N 
(He+)/N(He0) or N (He2+)/N (He+).

 The source function is given by the Planck function

 The Partition function is the weighted sum of the number of ways an atom 
or ion can arrange its electrons with the same energy.

 Ionization is an extremely energy consuming process. Ionization happens 
within a very small temperature interval.

 Saha-Boltzmann explains the spectral type (or temperature) dependence 
of lines in stellar atmospheres, e.g. strongest Balmer series at spectral type 
A and strong CaII lines in Solar-type stars.
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Boltzmann equation & Saha Equation
114

 Bolzmann equation:
𝑁𝑢

𝑁𝑙
=

𝑔𝑢

𝑔𝑙
𝑒−(𝐸𝑢−𝐸𝑙)/𝑘𝑇

log
𝑁𝑢

𝑁𝑙
= log

𝑔𝑢

𝑔𝑙
−

5040

𝑇
𝜒𝑢𝑙(𝑒𝑉)

 Saha Equation

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

log
𝑁+

𝑁0
= log

𝑢+

𝑢0
+ log 2 +

5

2
log 𝑇 − 𝜒𝑖𝑜𝑛Θ − log 𝑃𝑒 − 0.48

=5040/T

Boltzmann constant 
k=8.6174x10-5 eV/K 
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Opacity
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 We first introduced the concept of opacity when deriving the equation of 
radiative transport. 

 Opacity is the resistance of material to the flow of heat, which in most 
stellar interiors is determined by all the processes which scatter and absorb 
photons. 

 The removal of energy from a beam of photons as it passes through matter 
is governed by 
 line absorption (bound-bound), 
 photoelectric absorption (bound-free), 
 inverse bremsstrahlung (free-free), and 
 photon scattering.

 Stimulated emission acts as negative opacity by creating photons that add 
to the beam.

 Stellar atmospheres are predominantly hydrogen (90% by number), whilst 
helium makes up almost all the rest. These two elements provide most of 
the opacity over most wavelengths for most (hot) stars.



Absorption coefficient
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 The monochromatic absorption coefficient specifies the energy fraction taken 
from a light beam. It may be defined per particle, 
per gram, or in terms of a geometrical  
cross-section in cm2:

 Per gram:                    𝒅𝑰𝝀 ≡ −𝜿𝝀𝝆𝑰𝝀𝒅𝒔, where
𝜅𝜆 is the mass absorption coefficient [cm2 g-1],  is the density [g cm-3]. 

 Per cm path length:  𝒅𝑰𝝀 ≡ −𝜶𝝀 𝑰𝝀𝒅𝒔, where 𝜶𝝀 is the absorption coefficient [cm-1]
𝛼𝜆 = 𝜅𝜆𝜌

 Per particle:                𝒅𝑰𝝀 ≡ −𝝈𝝀𝒏 𝑰𝝀𝒅𝒔, where σλ is the absorption cross-section 
per particle for individual transitions and n  is the number density [particles cm-3]

𝜶𝝀 = 𝝈𝝀𝒏 = 𝜿𝝀𝝆

𝒅𝝉𝝀 = 𝜶𝝀𝒅𝒔 = 𝝈𝝀𝒏 𝒅𝒔 = 𝜿𝝀𝝆 𝒅𝒔



The mean absorption coefficient 
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 The grey approximation (α, 𝜿 =const) is very coarse but can still be useful. 
Is there a sensible mean value ത𝛼 to use? What choice to make for a mean 
value? 

 We demand flux conservation and hope to keep the temperature structure.

 From the third radiative equilibrium condition: 

𝐹 = න𝐹𝜆 𝑑𝜆 = 4𝜋 න
𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 = 4𝜋 න
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3
න
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1

3
𝐽𝜆(𝜏𝜆) =

1

3
𝐵𝜆

the Eddington 
approximation

𝐹 =
4𝜋

3

1

𝛼𝑅
න

𝑑𝐵𝜆

𝑑𝑠
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4𝜋

3

1

𝛼𝑅

𝑑𝐵

𝑑𝑠 1

𝛼𝑅
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׬
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𝑑𝐵
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න
0
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Rosseland mean opacity
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𝑑𝐵

𝑑𝑠
=

𝑑𝐵
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Definition of 
Rosseland mean 
opacity 

The Rosseland mean 1/αR is a weighted (harmonic) mean of opacity, for which 
there is a corresponding optical depth (Rosseland depth):

We hoped for the temperature structure:

The grey approximation is very good for Ross≫1. 

𝜏𝑅𝑜𝑠𝑠(𝑠) = න

0

𝑠

𝛼𝑅(𝑧)𝑑𝑧

𝑇4(𝜏) =
3

4
(𝜏 +

2

3
)𝑇𝑒𝑓𝑓

4 =
3

4
(𝜏𝑅𝑜𝑠𝑠 +

2

3
)𝑇𝑒𝑓𝑓

4

Eddington approximation

𝐹 = 𝜋𝐵



However, the atmosphere is NOT grey

 Opacity depends strongly on wavelengths → 
the atmosphere is NOT grey.

 Non-greyness changes the temperature structure.
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Dominant sources of opacity
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 The most important transitions for the continuous absorption are 
those which ionise atoms (with a continuum of final states).

 For H and He the line spectra do not greatly affect radiative 
transport. Some metals, with very complex line spectra 
do contribute to the continuum.

 New stellar opacities have been recalculated in the past 20-30 
years by two groups – OPAL (Iglesias et al., 1996) and The Opacity 
Project/OP (Seaton et al., 1994; Badnell et al., 2005) which have led 
to a factor of 3 increase in opacity under some temperature-density 
conditions via improved treatment of atomic data.
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Chemical composition (Population I)

 Stellar atmosphere = mixture, composed of many chemical 
elements, present as atoms, ions, or molecules

 Abundances, e.g., given as mass fractions  k

 Solar abundances





001.0

009.0

001.0

004.0

28.0

71.0

=

=

=

=

=

=

Fe

O

N

C

He

H











 X

Y

Universal abundance for 
Population I stars

X+Y+Z=1
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“Metals” (Z):
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Opacity

Square Area 
    Cosmic 
Abundance
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Chemical composition (Population II)

 Population II stars

 Chemically peculiar stars, 
e.g., helium stars

 Chemically peculiar stars, 
e.g., PG1159 stars
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H H
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= 



= 
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Other definitions

 Particle number density Nk = number of atoms/ions of element k per unit 
volume.  Relation to mass density:

with Ak = mean mass of element k  in atomic mass units (AMU)
mH = mass of hydrogen atom

 Particle number fraction     
𝑁𝑘

σ 𝑁𝑘′

 Logarithmic   𝜀𝑘 = log( 𝑁𝑘/𝑁𝐻) + 12.00

 Iron(Fe)-to-Hydrogen(H) ratio, for the Sun:   log
𝑁𝐹𝑒

𝑁𝐻
≅ −4.3

For other stars:   Fe/H = log
(Fe/H)∗

(Fe/H)⊙
= log(Fe/H)⊙- log(Fe/H)∗

Fe/H ⊙ ≡ 0

kHkk NmA=
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Line absorption

 A bound-bound transition absorbs or emits at   h = hc/ = u-l
where  is the excitation of the upper and lower levels above the ground state. 
Such transitions contribute to the line absorption. 
We will discuss spectral lines later.

 The cumulative effect of many lines can behave much as continuous opacity in the 
upper photosphere. Problems associated with line opacity are due to the large 
numbers of lines involved.

 Data for millions of atomic 
line transitions have been 
calculated by Kurucz and 
more recently by the OP 
(Opacity Project).
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Here is the effect of many lines 
(Fe and Ni) on the emergent UV 
continuum of the subdwarf O star 
Feige 67.  

(From Deetjen 2000)



Here is the effect of many lines (Fe II and Ni) on the emergent

UV continuum of the subdwarf O star Feige 67.

Observations
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Continuous absorption
128

For continuous sources of absorption, there must be a continuum of energy 
levels, i.e. at least one end of the transition involving a free state of the 
electron (at an energy above χion). Two possibilities…
 

1. A transition from a bound state (level n) to a free state with velocity v. 
The energy of the absorbed bound-free photon is given by  
                                      h =hc/= (ion-n)+mv2 ⁄2
Each bound-free transition corresponds to an ionization process (since 
the electron is free afterwards). The emission of a photon by 
a free-bound transition corresponds to a recombination process. 

2. Finally, one can get a continuum of transitions if the electron goes from 
one free-state (with velocity v1) to another free-state (with velocity v2) . 
The energy of the free-free transition is 

ℎ𝜈 =
ℎ𝑐

𝜆
=

𝑚𝑣2
2

2
−

𝑚𝑣1
2

2



Lyman, Balmer, Paschen continua
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 For hydrogen, transitions occurring 
between n=1 and another bound 
state n=2, 3, 4, etc. are known as the 
Lyman series (observed in the UV), 
between n=2 and higher members 
are the Balmer series (seen in the 
optical), with higher series observed 
in the IR: Paschen (n=3), Brackett 
(n=4), Pfund (n=5), etc.

 The Lyman continuum refers to a 
bound-free transition between n=1 
and the H+ continuum.
Accordingly, the Balmer continuum 
between n=2 and the H+ continuum, 
Paschen (n=3), Brackett (n=4), etc.
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bb, bf, ff-processes

1 eV=11604 K =1.602 10-12 erg
ion=13.6 eV,  ion/k=157820 K
k=8.6174x10-5 eV/K



Continuous absorption
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Which states contribute at a given wavelength?
 Photons need an energy great enough to overcome the ionization 

energy i.e. h >ion-n  or  < hc/(ion-n). At long wavelengths only 
energy levels with very large n can contribute to 𝜶, so most 
continuous opacity is from mainly free-free transitions.

 The contribution of level n will start at n=hc/(ion-n)  and 
continue for shorter . There is a discontinuity at n because of 
a sudden change in the number of absorbing atoms, e.g. 

Lyman  jump    ( 912Å ) due to the contribution of n=1.
Balmer jump ( 3647Å ) due to the contribution of n=2.

 To derive 𝛼𝜆, the total absorption at wavelength , we have to 
multiply n by the number of atoms in this state and sum up all 
states n that contribute at this wavelength. 
For this we need to use the Boltzmann formula. 𝜶𝝀 = 𝝈𝝀𝒏



Bound-free absorption coefficient
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Kramers approximation for continuous cross-section for level n 
for H-like nucleus of charge Z:

𝝈𝒃𝒇 𝐇 =
𝟑𝟐𝝅𝟐

𝟑 𝟑

𝒆𝟔

 𝒄𝟑 𝒉𝟑 𝑹
𝝀𝟑

𝒏𝟓 𝑮𝒃𝒇 = 𝒂𝟎
𝝀𝟑

𝒏𝟓 𝑮𝒃𝒇 𝐜𝐦𝟐 per neutral H atom

The photoionization threshold is En=hnc, 
so n decreases with  (increases with ). 
For H, at the threshold 1c=6.310-18 cm2

The total absorption coefficient for H is:

Gaunt factor ≈ 1

R=2p2me4/h3cRydberg constant a0=1.044910-26 for  in angstroms

ℎ𝜈𝑛𝑐 = 𝜒𝑖𝑜𝑛 − 𝜒𝑛

𝛼𝑏𝑓
𝐻 (𝜆) = ෍

𝑛> Τ𝜒𝑖𝑜𝑛 ℎ𝑐

∞

𝜎𝑛𝑐(𝜆)𝑁𝑛
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The bound–free absorption coefficient for hydrogen increases with n.



Example: Lyman continuum
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𝝈𝒃𝒇 𝐇 = 𝒂𝟎
𝝀𝟑

𝒏𝟓 𝑮𝒃𝒇 cm2 per neutral H atom           a0=1.044910-26 for  in angstroms

For H, at the photoionization threshold, 1c=6.3x10-18 cm2

𝜏𝜆 = න
0

𝑆

𝜅𝜆𝜌𝑑𝑠 = න
0

𝑆

𝜎𝜆𝑛𝑑𝑠

Absorption by interstellar medium (ISM) at the Lyman edge:

𝜏𝜆 = න
0

𝑆

𝜎1𝑐 𝜆  𝑁𝐼𝑆𝑀𝑑𝑠 = ഥ𝑁𝐼𝑆𝑀 𝜎1𝑐𝑆

 ഥ𝑁𝐼𝑆𝑀≈ 1cm3 but all the H atoms are in the ground state.

𝜏𝜆 = 1  at    𝑆 =
1

 ഥ𝑁𝐼𝑆𝑀 𝜎1𝑐
= 1.5 × 1017cm =

1

20
pc

Impossible to observe distant objects at < 912Å

Gaunt factor ≈ 1



Free-free absorption coefficient (1)
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 The free-free continuous absorption coefficient for H is much smaller than 
the bound-free coefficient.

 When a free electron collides with a proton, its orbit (unbound) is altered. 
A photon may be absorbed during such a collision, the orbital energy of 
the electron being increased by the photon energy.

 The strength of the absorption depends on the electron velocity (slower 
electrons are more likely to absorb a photon because a slow encounter 
increases the probability of a photon passing by during the collision.

 We adopt a Maxwellian distribution.

 Kramers (1923):

𝑑𝜎𝑓𝑓 H =
2

3 3

ℎ2𝑒2𝑅

𝜋𝑚𝑒
3

𝜆3

𝑐3 𝑣
𝑑𝑣

Rydberg constant 

Cross section for the fraction of electrons in the velocity interval



Free-free absorption coefficient (2)
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 Integrate over velocity:

𝜎𝑓𝑓 H =
2

3 3

ℎ2𝑒2𝑅

𝜋𝑚𝑒
3

𝜆3

𝑐3

2𝑚𝑒

𝜋𝜅𝑇

1/2

 The total absorption coefficient for H is:

where the number density of electrons, ions and neutral Hydrogen are Ne, Ni 
and N, respectively.

 NiNe/N can be substituted:

𝜅𝑓𝑓
𝐻 = 𝜎𝑓𝑓𝐺𝑓𝑓𝜆3

log 𝑒

2ΘΙ
10−ΘΙ

          where =hcR, R=2p2me4/h3c

 This absorption process is the inverse of Bremsstrahlung emission.

𝜅𝑓𝑓
𝐻 =

𝜎𝑓𝑓𝐺𝑓𝑓𝑁𝑖𝑁𝑒

𝑁

Gaunt factor



Wavelength dependence of α(H) 
137

 Consider the H absorption coefficient 𝜶 (per atom) for T=5040K 
(=5040/T=1). Let us compare the value of 𝜶 in the Balmer (n=2) to 
Lyman (n=1) continua at 912Å:

 From above, nn–5  and gn=2n2 so

 There is a huge difference in hydrogen absorption coefficient at 912Å 
(Lyman edge)  at T=5040K. 

 Similar calculations at T=25200K (=5040/T=0.2) give 

 Hydrogen absorption coefficient is very T sensitive!

𝛼(𝐵𝑎𝑙𝑚𝑒𝑟)

𝛼(𝐿𝑦𝑚𝑎𝑛)
=

𝜎𝑖2

𝜎𝑖1

𝑁2

𝑁1
=

𝜎𝑖2𝑔2

𝜎𝑖1𝑔1
𝑒−(10.2𝑒𝑉/𝑘𝑇) =

𝜎𝑖2𝑔2

𝜎𝑖1𝑔1
10−(10.2×5040/𝑇)

𝛼(𝐵𝑎𝑙𝑚𝑒𝑟)

𝛼(𝐿𝑦𝑚𝑎𝑛)
=

2−5 × 8

1 × 2
6.3 × 10−11 ≈ 8 × 10−12

001.0009.0
21

82

)(

)(
5

=



=

−

Lyman

Balmer







Wavelength dependence of α(H) 
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 Consider the H absorption coefficient 𝜶 (per atom) for T=5040K 
(=5040/T=1). What about the value of 𝜶 in the Paschen (n=3) to Balmer 
(n=2) continua at 3647Å?

 From above, nn–5  and gn=2n2 so

 There is a huge difference with Lyman edge (8 × 10−12). 
Still, Balmer jump is notable.

 Obviously, all the following jumps will be less and less prominent.

𝛼(+)

𝛼(−)
=

𝜎𝑢

𝜎𝑙

𝑁𝑢

𝑁𝑙
=

𝜎𝑢𝑔𝑢

𝜎𝑙𝑔𝑙
𝑒−(𝜒𝑢𝑙/𝑘𝑇) =

𝜎𝑢𝑔𝑢

𝜎𝑙𝑔𝑙
10−(𝜒𝑢𝑙×5040/𝑇)

𝛼(𝑃𝑎𝑠𝑐ℎ𝑒𝑛)

𝛼(𝐵𝑎𝑙𝑚𝑒𝑟)
=?

Transition between levels u and l:

𝜒𝑢𝑙 = 𝐶
1

𝑢2
−

1

𝑙2

where C=ion=-13.6 eV

0.004



Wavelength dependence of α(H) 
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 There is a huge difference between Lyman edge (8 × 10−12) and Balmer jump 
(0.004). Still, Balmer jump is notable.

 Obviously, all the following 
jumps are less and less 
prominent.

Paschen jump

Balmer jump



Wavelength dependence of α(H) 
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 Primarily, the Paschen 
continuum (absorption from 
n=3) determines the H 
absorption coefficient in the 
visual (3647Å<<8205Å). 

 For He+, the ionization energy 
is larger by a factor of Z2=4 
than that of the H atom. All 
discontinuities occur at 
wavelengths shorter by a 
factor of 4, i.e. 228Å instead 
of 912Å for the He+ Lyman 
continuum.

Lyman 
continuum

Balmer 
continuum

Paschen 
continuum

T=25,200K

T=5,040K



Negative hydrogen ion H–

141

 The H atom is capable of holding a second electron in 
a bound state (binding energy 0.754eV). All photons 
with <1.64m have sufficient energy to ionize the 
H– ion back to neutral H atom plus a free electron. 
The extra electrons needed to form H– come from 
ionized metals (such as Ca+).

 For Solar-like stars, it turns out that H– is the 
dominant continuum opacity source at optical 
wavelengths. In early-type stars H– is too highly 
ionized to play a role, whilst in late-type stars there 
are too few free electrons (since no ionized metals).



Importance of H– in the Sun (1)
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We can use the Saha equation to derive the relative population of N(H–) in the Sun 
(u–=1, T=5777K, χion=0.754 eV),

So, only 2 out of 108  hydrogen atoms is in the form of H–. 

Why then the H– absorption coefficient so important? 
Recall, only H atoms in the 3rd quantum level (n=3, Paschen continuum) can 
contribute to the visual continuous  opacity. From the Boltzmann formula 

i.e. NH(n=3)/NH(n=1)=2.4x10-10 for the Sun. We can now compare the number of H– 
ions and H atoms in the Paschen continuum: 

log
𝑁(𝐻0)

𝑁(𝐻−)
= log

2

1
+ log 2 + 9.40 − 0.66 − 1.18 − 0.48 = +7.68

log
𝑁+

𝑁0
= log

𝑢+

𝑢0
+ log 2 +

5

2
log 𝑇 − 𝜒𝑖𝑜𝑛Θ − log 𝑃𝑒 − 0.48

log Τ𝑁(𝐻𝑛=3) 𝑁(𝐻𝑛=1) = log Τ2(3)2 2(1)2 − 5040/5777 × 12.1 = −9.6

log Τ𝑁(𝐻𝑛=3) 𝑁(𝐻−) = 2.4 × 10−10/2.1 × 10−8 = 0.01



Importance of H– in the Sun (2)
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The atomic absorption coefficients per absorbing atom are 
comparable, so we expect H– b-f absorption to be 100 
times more important than the H Paschen continuum for 
the Sun. 

The Balmer continuum (n=2) cannot so easily be neglected 
and does contribute to the opacity at shorter wavelengths.

Note: For early type stars (A and earlier) we find 
NH(n=3)/N(H–) ≫ 1 so absorption of neutral H is much 
more important than H–. This is why such stars have very 
strong discontinuities in the Balmer & Paschen limits. We 
will discuss the importance of the Balmer jump shortly.



H– continuous opacity
144

The bound-free H– absorption can occur for <16500Å, with a 
different behaviour from H, reaching a maximum at 8000Å, and 
decreasing towards the ultraviolet. At longer wavelengths, there 
is only free-free H– absorption (with a -3  3 dependence). 



Hydrogen continuous opacity
145

 We have identified H– 
(bound-free) in the visual 
and H– (free-free) in the IR 
as principal sources of 
opacity in the Sun. 

 The H Balmer continuum 
shortward of the 3647Å 
Balmer jump is an 
additional contributor.  

 What observational 
evidence is there that this is 
true for the Sun, and what 
other forms of opacity play a 
role in other stars?



T() from Eddington approximation
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We can use the observed limb 
darkening of the Sun at different  
to derive the depth dependence of 
the source function, S(). 

Assuming LTE, S()=B[T()]
we can obtain the temperature as 
a function of . 

     

Recall from radiative equilibrium 
(assuming the Eddington 
approximation), T() can be 
obtained for a grey atmosphere.



T() from limb darkening
147

Limb darkening observations
of the Sun at different 
wavelengths (via imaging using 
suitable filters) to derive T() at 
various wavelengths (e.g. 3737, 
5010 & 8660 Å shown here). 

The horizontal line shown at 
T=6300 K connects points which 
correspond to the same 
geometrical  depth, so it is 
possible to derive the wavelength 
dependence of .



The wavelength dependence of  (and hence  or ) can be 
observationally derived for the Sun – the optical and IR 
dependence agrees remarkably well with the theoretical 
absorption coefficient for b-f and f-f H–.

Observational Theoretical

Confirmation of H–

148



H e  A B S O R P T I O N

M E T A L L I C  A B S O R P T I O N

S C A T T E R I N G

E F F E C T  O F  N O N G R E Y N E S S  O F  T H E

T E M P E R A T U R E  S T R U C T U R E

Other sources of opacity



Many physical processes contribute to
opacity  

 Bound-Bound Transitions – absorption or emission of radiation 
from electrons moving between bound energy levels.

 Bound-Free Transitions – the energy of the higher level electron 
state lies in the continuum or is unbound.

 Free-Free Transitions – change the motion of an electron from one 
free state to another.

 Electron Scattering – deflection of a photon from its original path by 
a particle, without changing its wavelength.

 Rayleigh scattering – photons scatter off bound electrons 
(varies as -4).

 Thomson scattering –photons scatter off free electrons 
(independent of wavelength).

 Photodissociation may occur for molecules.
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What can various particles do?

 Free electrons – Thomson scattering

 Atoms and Ions –

 Bound-bound transitions

 Bound-free transitions

 Free-free transitions

 Molecules –

 BB, BF, FF transitions

 Photodissociation

 Most continuous opacity is due to hydrogen in one 
form or another



He opacity?
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Helium is the next most abundant element after H, so 
is it important for the continuous absorption in the Sun or other stars?

Ionization of He to He+ requires an energy of 24.6eV (λ<504Å are needed). Indeed, 
even the first excited level lies 19.8eV above the ground state, which can contribute 
only below 600 Å where there is very little radiation coming from the Sun. From the 
Boltzmann formula (g1=1, g2=3): 

 

                                                 log(NHe(2s3S) / NHe(1s1S)) = 0.48-19.8(5040/5777) = –16.8

So, only 10-17 of the He atoms can contribute to the absorption, and since He is 10% 
as abundant as H, only one in 10-18 atoms are He atoms in the 1st excited state.

Consequently, He opacity plays a negligible role for the Sun. The bound-free 
absorption from He– is generally negligible, whilst free-free He– (with a form similar 
to free-free H–) can be significant at long wavelengths in cool stars. 
Photoionization (bound-free processes) from He only plays a significant role for the 
hottest, O-type, stars.



Metal (Iron) opacity
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 If He only plays a role for very hot stars, do any metals contribute to the 
continuous opacity in cools stars?  

 Iron (Fe/H=10-4) is generally the dominant metal continuous opacity 
source in stellar atmospheres.

 In the Sun, let’s consider absorption by atomic Fe in the ultraviolet 
(2000 Å) for which an excitation energy of 1.7 eV is required. The 
fraction of excited Fe atoms is 4  10-2 relative to the ground-state 
(from Boltzmann formula), whilst the fraction of ionized to neutral Fe 
is approximately 6 (from Saha equation). 

 Accounting for the abundance of Fe, we obtain the fraction of atomic Fe 
atoms absorbing at 2000 Å relative to the total number of H atoms to be 
4  10-2  10-4  1/6=6  10-7,

 We previously obtained 2  10-8 for H–, so metallic lines in the UV are 
much more important for the absorption than the H– ion, or the neutral H 
atom. Even more important is the absorption by the metal atoms in the 
ground level, which is <1570 Å for Fe, <1520 Å for Si.



Molecular opacity

 CN–, C2
–, H20– , CH3, TiO are important sources of opacity in 

late (K-type) & very late (M-type) stars.

 Molecular Hydrogen (H2) is more common than atomic H in 
stars cooler than mid-M (brown dwarfs!)

 H2 does not absorb in the visible spectrum, so only plays a 
role in the IR.

 H2
+ does absorb in the visual but is less than 10% of H–. 

H2
+ is a significant absorber in the UV for such very cool stars.
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Scattering
155

In the classical picture of an atom, we can consider the electron 
as being bound to the atom. Any force trying to remove it will be 
counteracted by an opposing force. If a force were to pull on the 
electron and then let go, it would oscillate with 
eigenfrequencies   = 2p. 

The scattering cross-section for a classical oscillator can be 
written as

𝜎𝑠 =
8𝜋

3

𝑒4

𝑚𝑒
2𝑐4

𝜈4

(𝜈2 − 𝜈0
2)2+𝛾2𝜔2

  = 2p

where 0 is the eigenfrequency of an atom and  is the damping 
constant.



Thomson & Rayleigh Scattering
156

Two cases are of interest:

1. Thompson (electron) scattering (0=0, =0)
(photons scatters off a free electron, no change in , just 
direction):

𝜎𝑇 =
8𝜋

3

𝑒4

𝑚𝑒
2𝑐4

=
8𝜋

3
𝑟𝑒

2 = 6.65 × 10−25 cm2/electron

2. Rayleigh scattering by atoms/molecules (≪0, ≪0)

𝜎𝑅 𝜈 ∝ 𝜎𝑇𝜈4 = 𝜎𝑇−4

classical electron radius



Electron scattering vs. f-f transition
157

 Electron scattering (Thomson scattering) – the path 
of the photon is altered, but not the energy.

 Free-Free transition – the electron emits or absorbs 
a photon.  A free-free transition can only occur in 
the presence of an associated nucleus.  
An electron in free space cannot gain the energy of a 
photon.



Thompson Scattering
158

Since an electron is tiny it makes a poor target for an incident 
photon so the cross-section for Thomson scattering is very 
small (T=6.65x10-25 cm2 ) and has the same value for photons 
of all wavelengths: As such electron scattering is the only grey 
opacity source. 

Although e- are very abundant in the Solar photosphere, the 
small cross-section makes it unimportant. 

Electron scattering is most effective as a source of opacity at 
high temperatures. In atmospheres of OB stars where most of 
the gas is completely ionized, other sources of opacity involving 
bound electrons are excluded. In this regime, T  dominates the 
continuum opacity.



Rayleigh Scattering
159

 Rayleigh scattering by H atoms in Solar-type  is more relevant 
than e- scattering since atoms are much more common 
(recall N(H)≫N(H+)). 

 In M stars, H2 becomes the dominant form for hydrogen, with 
strong electronic transitions in the UV, so Rayleigh scattering 
by molecular H2 can be important. 

 The cross-section for Rayleigh scattering is much smaller than 
T, and is proportional to -4 so increases steeply towards the 
blue. (In the same way the sky appears blue, due to a steep 
increase in the scattering cross-section of sunlight scattered 
by molecules in our atmosphere). 

 The cross-section is sufficiently small relative to metallic 
absorption coefficients that Rayleigh scattering only plays a 
dominant role in extended envelopes of supergiants.



Total extinction coefficient 
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 The total extinction coefficient is given by:

𝜅𝜈 = (1 − 𝑒 Τ−ℎ𝜈 𝑘𝑇) ෍

𝑗

𝑥𝑗(𝜅𝑗
𝑏𝑏 + 𝜅𝑗

𝑏𝑓
+ 𝜅𝑗

𝑓𝑓
) + 𝜅𝑠

where the sum is over all elements j of number fraction xj. 

Here the (𝑒−
ℎ𝜈

𝑘𝑇) term accounts for stimulated emission (incident photon 
stimulates electron to de-excite and emit photon with identical energy, 
as in a laser). We shall discuss it later.  

 What is the total extinction coefficient for different types of 
star?



G-type (optical depth unity)

For G stars, the 
H– ion (bound-
free) dominates 
for optical.
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F-type (optical depth unity)

For F stars, the 
absorption is 
dominated by the 
two components 
of the H– ion 
(bound-free) and 
(free-free), with a 
contribution from 
the Balmer 
continua below 
3647Å.
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For a late A star, 
absorption from 
the H– ion is 
dropping back 
compared to the 
cooler cases, while 
neutral hydrogen 
has grown with 
increasing 
temperature. 
H (bound-free) 
Balmer, Paschen 
and Brackett 
continua start to 
dominate.

A-type (optical depth unity)
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B-type (optical depth unity)

At late B, the 
H (bound-free) 
Balmer, Paschen & 
Brackett continua 
completely 
dominate. 

For O stars 
electron scattering 
is the primary 
opacity source.
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O     B     A     F     G     K     M

H–Neutral H

H–

Electron scattering
(H and He are too 
highly ionized)

He+ He

High

Low

(high pressure forces more H–)

Low pressure –
less H–, lower
opacity

Dominant Opacity vs. Spectra Type
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Continuum Energy Distribution
166

What is the effect of the  dependence 
of α on the emergent spectrum? 

Consider the Balmer discontinuity at 
3647Å. Immediately above the 
discontinuity  (3647+),  the opacity α 
is lower  than average (shown as ത𝛼), 
so we probe deeper  than average into 
the atmosphere, where S  (and F ) is 
higher  than the grey case, so F  
exceeds the Planck function.

For 3647-, the opacity is higher  than 
average, so we probe less deep  into 
the atmosphere (where T  is smaller), 
and so receive a lower  F . 

ത𝛼



Balmer jump. Why is important?
167

 In hot stars, T>9000K, H– negligible, only H contributes to opacity.  
                                                                  
                                                                             Function of T only

    Thus, we can obtain the temperature.

In cooler stars (Solar-type)

)2(

)3(

)H(

)H(

=

=
=

−

+

−

+

nN

nN

H

H









“observed”    known     From Boltzmann law(T)



Balmer jump in Vega
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Summary

 Bound-bound transitions contribute to the line absorption. Bound-free and free-
free transitions (plus scattering) contribute to the continuous absorption, mostly 
by H & He.

 Atomic H absorption coefficient highly T sensitive. For late-type stars in the optical 
and IR, bound-free and free-free transitions of the H– ion dominate the continuous 
opacity, since the population of atomic H in n=3 (Paschen series) is so low. 

 For early-type stars, atomic H dominates, producing strong jumps in the opacity at 
the Lyman, Balmer & Paschen edges.

 Negative H ion confirmed as dominant Solar optical & IR opacity source from limb 
darkening. 

 He b-f opacity relevant only for very hot stars. Metal (Fe) opacity contributes to 
opacity in Solar-type stars in ultraviolet.

 Thompson (electron) scattering is grey & dominates continuum opacity in hot 
stars. Rayleigh scattering most important for late-type supergiants in UV

 Observed form of e.g. Balmer jump in A stars can be understood from the 
discontinuity in continuous H b-f opacity.   

 Nongreyness changes the temperature structure.
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E Q U I V A L E N T  W I D T H

F W H M

F W Z I
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Spectral lines



Spectral Lines

(e.g. 2D echelle image of optical Solar spectrum)
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Continuous Energy Distribution

Vega

172

Dwarf 
Stars



Spectra of stars, clusters, galaxies...
173

Spectral lines and continuum energy distributions provide temperatures 
and metallicity of individual stars, plus ages of clusters & galaxies 
(since the highest mass stars are visually the brightest).



Spectral Lines

Impact of Spectral Resolution
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We now turn from the 
continuous energy 
distribution to the line 
spectrum. 
Relative intensity r 
(not very common term, 
usually applied to 
emission lines):

𝑟𝜆 =
𝐹𝜆

𝐹𝑐

The line depth R:

The largest R,0 ⎯ 
the central line depth

Line depth
175

Continuum

Fc
F

R

r

r,0

W



 The total area in a spectral line divided by the continuum flux Fc is called the 
line equivalent width, i.e. an integral over a line depth R

 The division by the continuum flux means that this is a measurement of the 
flux in units of the continuum – the equivalent width is identical to a 
rectangular line of width W. 

 EW of absorption lines is positive, emission lines have negative EWs, and are 
measured in Ångströms (at optical wavelengths).

 


 dRd
F

FF
W

c

c

 =
−

=

R

Equivalent Width
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FWHM and FWZI
177

 Other measures of the line width are the Full Width at Half Maximum (FWHM), 
the distance between the half line depth from blue to red, i.e. ()1/2 , 
and the Full Width at Zero Intensity (FWZI), 

FWZI



Line core and the wings 
178

 We denote optically (thin) thick lines as those in which the line core is 
(not) saturated, i.e. reaching zero intensity. In reality, zero intensity is only 
reached for lines in non-LTE.

 The region close to the centre of the spectral line 
is referred  to as the line core, whilst the wings sweep up the local 
continuum.



Example: Solar spectrum
179

Strong  spectral lines in the Solar 
spectrum typically have 
equivalent widths W1Å, such 
as the Na I D lines in the yellow. 
In other stars, line equivalent 
widths can reach tens or even 
hundreds of Angstroms. EWs are 
by definition measured relative 
to the continuum strength, 
unlike line fluxes.

5885                  5890                   5895                   5900



Formation of absorption lines
180

 We obtained earlier that the emergent flux from the stellar surface 
is p times the Source function at an optical depth of 2/3:

𝐹𝜆(0) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3) = 𝜋𝐵𝜆(𝑇(𝜏𝜆 = 2/3))

 In spectral lines, the opacity is much larger, thus we see much 
higher layers at these wavelengths. These layers have a lower 
temperature and so B is smaller, leading to a smaller F in the line 
than Fc, the continuum flux in the neighbourhood of the line.

 In the following few lectures, we will study theory of line formation.

LTE



E I N S T E I N  C O E F F I C I E N T S

L I N E  P R O F I L E S :  N A T U R A L  B R O A D E N I N G

B R O A D E N I N G  O F  S P E C T R A L  L I N E S

N A T U R A L  L I N E  B R O A D E N I N G
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Spectral line formation



Bound-Bound (free-free) transitions
182

There are 3 basic kinds of line processes associated with bound-bound 
transitions of atoms or ions:

1. Direct Absorption, in which the absorbed photon induces a bound 
electron to go into a higher energy level.

2. Spontaneous Emission, in which an electron in a higher energy level 
spontaneously decays to lower level, emitting the energy difference as a 
photon.

3. Stimulated Emission, in which an incoming photon induces an electron in 
a higher energy level to decay to a lower level, emitting in effect a second 
photon that is nearly identical in energy (and even phase) to the original 
photon.

The probability that the atom will emit (or absorb) its quantum of energy is 
described by Einstein probability coefficients, written as Bij , Aji, and Bji.



Einstein coefficients
183

      

Einstein coefficients concern the probability that a particle spontaneously emits a 
photon, the probability to absorb a photon, and the probability to emit a photon under 
the influence of another incoming photon. Einstein’s coefficients are valid for all 
radiation fields.



Spontaneous emission
184

Consider an upper level u and a lower level l separated by an energy hν. 

 The probability that the atom will spontaneously emit its quantum of energy 
within a time dt and in a solid angle d is Aul dt d. 

 The proportionality constant, Aul, is 
the Einstein probability coefficient for 
spontaneous emission [s-1].

 Occurs independently of the radiation field.
 Emits isotropically.

For H, A32=4.4107 s-1. If at time t0=0 there are 
Nu(0) atoms in level u, then at time t  
the population is N u(t)=Nu(0)exp(-Aul t). 
Lifetime = 1/Aul
  



Absorption
185

Consider an upper level u and a lower level l, separated by an energy hν. 

 Photons with energies close to hν cause transitions from levels l to u.
 The probability per unit time for this process 

will evidently be proportional to the mean 
intensity J at the frequency ν.

 Blu J : transition probability of absorption
per unit time.

 The proportionality constant Blu is one of 
the Einstein B-coefficients.



Stimulated emission
186

Planck's law does not follow from considering only spontaneous emission and 
absorption. Must also include stimulated emission, which like absorption is 
proportional to the mean intensity J.
 The system goes from an upper level u to a lower level l stimulated by the 

presence of a radiation field (hν  corresponding to the energy difference between 
levels u and l ).

 The energy of the emitted photon is the same as of 
the incoming photon (also direction and phase are 
the same).

 Bul J : transition probability of stimulated emission 
per unit time.

 The proportionality constant Bul is a second Einstein 
B-coefficient.

 The process of stimulated emission is sometimes 
referred to as a process of negative absorption.

 Stimulated emission occurs into the same state 
(frequency, direction, polarization) as the photon 
that stimulated the emission.



Relation between Einstein coefficients
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Einstein’s Coefficients are not independent. To find a relation between them, 
let’s assume strict Thermodynamic Equilibrium (TE), and, for simplicity, 
adopt a 2-level approximation.
In TE, each process is in equilibrium with its inverse, i.e., within one line 
there is no netto destruction or creation of photons (detailed balance)

       n1B12 Jν= n2A21 + n2B21 Jν

𝐽𝜈 =
𝐴21/𝐵21

𝑛1
𝑛2

𝐵12
𝐵21

− 1

𝑛1

𝑛2
=

𝑔1

𝑔2
𝑒h21/𝑘𝑇

    

Transitions 1→2 equal to 2→1
n1, n2: number density of e- in levels 1,2

Thermodynamic equilibrium:
Boltzmann, J = B(T )



Relation between Einstein coefficients
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𝐵𝜈(𝑇) =
𝐴21/𝐵21

𝑔1𝐵12
𝑔2𝐵21

𝑒h21/𝑘𝑇 − 1

Comparison with Planck blackbody radiation:

𝐵𝜈 𝑇 =
𝐴21

𝐵21

𝑔1𝐵12

𝑔2𝐵21
𝑒

h21
𝑘𝑇 − 1

−1

=
2ℎ𝜈21

3

𝑐2
𝑒

h21
𝑘𝑇 − 1

−1

𝐴21

𝐵21
=

2ℎ𝜈21
3

𝑐2  →    𝐴21 = 𝐵21
2ℎ𝜈21

3

𝑐2

𝑔1𝐵12

𝑔2𝐵21
= 1 →  𝑔1𝐵12 = 𝑔2𝐵21

TE: blackbody,  J=B(T )



Einstein coefficients
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Thus, if one of the Einstein Coefficients is known then two other can be 
calculated.

Important:  The Einstein’s coefficients are atomic constants. 
Although the above relations were derived under the conditions of TE, these 
relations hold in any non-TE state.

Total amount of absorbed photons per unit time at a given frequency is

𝑛1𝐵12𝐽𝜈 − 𝑛2𝐵21𝐽𝜈 = 𝑛1𝐵12𝐽𝜈 1 −
𝑛2𝐵21

𝑛1𝐵12
= 𝑛1𝐵12𝐽𝜈 1 −

𝑔1𝑛2

𝑔2𝑛1

Thus, to take into account negative absorption (stimulated emission), 
one must multiply the number of absorbed photons by

1 − 𝑒−h12/𝑘𝑇

(we already did it before)



190

Home work:

 When (at what temperatures, wavelengths) is 
spontaneous or induced emission stronger? 

Assume LTE (blackbody)

Comparison of induced and 
spontaneous emission



Lifetime of atom in excited state
191

In the absence of collisions and of any other transitions than the ul  one, the mean lifetime of 
particles in state u  is Lifetime = 1/Aul

If at time t0=0 there are Nu(0) atoms in level u, then at time t  the population is

𝑁𝑢 𝑡 = 𝑁𝑢(0)𝑒−𝐴𝑢𝑙𝑡. 

Typical value of Aij is 107- 108 s-1  (for H, A32=4.4107 s-1), so lifetime is ~10-8 s.

However, not all transitions are allowed, some are strictly forbidden!
In practice, strictly forbidden means very low probability of occurrence  ➔ Metastable 
states at which a lifetime is much longer than of the ordinary excited states but shorter than of 
the ground state.

Lifetimes at metastable states can reach several hours and even longer!

Forbidden line transitions are noted by placing square brackets around the atomic species in 
question, e.g. [O III] or [S II]. A semi-forbidden line, designated with a single square bracket, 
such as C III], occurs where the transition probability is about a thousand times higher than for 
a forbidden line.



Einstein A-coefficients for Hydrogen
192
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Spectral line formation



Line profiles
194

All the spectral lines are not monochromatic but have a finite width and a particular 
profile. Width and shape of a line depend directly on atomic transitions and plasma 
environment

Energy levels are not infinitely sharp. An unavoidable source of broadening is due to 
the Heisenberg uncertainty principle: 

dE dt ~h/2π

dt being the timescale of decay (finite lifetime of energy levels).

In each spectral line, photons of different frequencies (but close to central frequency 
0) can be absorbed. 

Let us call φ(ν) the probability that the transition occurs by emitting or absorbing a 
photon with energy hν (emission or absorption line,  ׬φ(ν)dν ≡ 1).

This natural broadening has the form of a Lorentzian function. 



Natural Line Width
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 A spectral line of an atom is formed by a transition of electron between two 
energy levels, whose difference yields the frequency of the line. 

 The bound-bound absorption problem is analogous to the mechanical system 
of a damped, driven harmonic oscillator.

 In the classical picture of an atom, we can consider the electron as being 
bound to the atom. Any force trying to remove it will be counteracted by an 
opposing force. If a force were to pull on the electron and then let go, it would 
oscillate with eigenfrequencies  0=2p0. 

 The scattering cross-section for a classical oscillator can be written as

𝜎 =
8𝜋

3

𝑒4

𝑚𝑒
2𝑐4

4

(2 − 0
2)2+𝛾2𝜔2

 =2p

     where the classical damping constant =2e20
2 /3mec3 =(8p2e2/3mec3)0

2 

 This is the Lorentz function which is sharply peaked around =0.



Lorentz function (1)
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𝜎 =
8𝜋

3

𝑒4

𝑚𝑒
2𝑐4

4

(2 − 0
2)2+𝛾2𝜔2

 =2p γ =
8𝜋2𝑒2

3𝑚𝑒
2𝑐3

𝜈0
2

𝜎 =
𝑒2

𝑚𝑒𝑐

Τ𝛾 4𝜋

(ν2 − ν0
2)2+( Τ𝛾 4𝜋)2

Note that γ defines the width of the line.



The Classical Damping Line Profile
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Lorentz function (2)
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The Lorentz function        𝜑(𝜈) =
𝐴

(𝜈−𝜈0)2+(𝛾/4𝜋)2

is sharply peaked around  =0 with a maximum of φ(0) =A/(/4p)2.

To find the full-width at half maximum (FWHM) we find the value of 1 at which the 
function is ½ its maximum, i.e. φ(1)=1/2 φ(0) and then solve for 
the FWHM  = 1/2=2(1-0):

1

2

𝐴

(𝛾/4𝜋)2 =
𝐴

(𝜈 − 𝜈0)2 + (𝛾/4𝜋)2  (𝜈 − 𝜈0)2 + (𝛾/4𝜋)2 = 2(𝛾/4𝜋)2

we obtain   |𝜈1 − 𝜈0| = (𝛾/4𝜋)                                  Δ𝜈1/2 = 2 𝜈1 − 𝜈0 = 𝜸/𝟐𝝅
           

i.e.                       (Δ𝜆)1/2 =
𝜆0

2

𝑐
(Δ𝜈)1/2 =

𝜆0
2

𝑐

𝛾

2𝜋
=

4𝜋𝑒2

3𝑚𝑐2 =
4𝜋

3
𝑟𝑒 = 0.00012 Å

Classical electron radius



FWHM
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Δ𝜈𝐹𝑊𝐻𝑀 = 2(|𝜈1/2 − 𝜈0|) = 𝛾/2𝜋



Oscillator Strength
200

      

We obtain the “integrated line scattering cross-section” by integrating over all frequencies

𝜎𝑡𝑜𝑡𝑎𝑙 = න

0

∞

𝜎𝜈𝑑𝜈 =
𝑒2

𝑚𝑒𝑐
න

0

∞
𝛾/4𝜋

(𝜈 − 𝜈0)2 + (𝛾/4𝜋)2
𝑑𝜈 =

𝜋𝑒2

𝑚𝑒𝑐

This classical result predicts a unique  scattering relation for all  transitions. 

The quantum-mechanical  treatment shows that line scattering cross-sections may in fact  differ 
greatly. The customary way of writing this result is via 

𝜎𝑡𝑜𝑡𝑎𝑙 =
𝜋𝑒2

𝑚𝑒𝑐
𝑓𝑖𝑗

where 𝑓𝑖𝑗  is the (dimensionless) oscillator strength of the transition.

Obtained from lab measurements, the Solar spectrum or quantum mechanical calculations 
(e.g. Opacity Project), fij and Einstein A coefficient are related via:

𝐴𝑖𝑗 =
6.67 × 1015

𝜆𝑖𝑗
2 (Å)

𝑔𝑖

𝑔𝑗
𝑓𝑖𝑗



fij for Lyman and Balmer lines
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Only for the strongest transitions does fij approach unity. An electron in the n=2 orbit 
of H is about 5 times more likely to absorb an H photon and make a transition to the 
n=3 orbit, than it is to absorb an H photon and jump to the n=4 orbit. 
For  forbidden  lines, fij ≪1.

 (Å) Line flu glow gup

1215.7 Ly  0.41 2 8

1025.7 Ly  0.07 2 18

972.5 Ly  0.03 2 32

6562.8 H  0.64 8 18

4861.3 H  0.12 8 32

4340.5 H  0.04 8 50
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Spectral line formation



Broadening of spectral lines
203

There are numerous broadening mechanisms which 
influence the apparent shape of spectral lines:

1. Natural broadening     √
2. Thermal broadening   √
3. Microturbulence 

(treated like extra thermal broadening)
4. Collisions (important for strong lines)
5. Isotopic shift, hyperfine splitting (hfs) ,

Zeeman effect

6. Macroturbulence
7. Rotation
8. Instrumental broadening

m
ic

ro
sc

o
p

ic
m

a
cr

o



Natural Line Broadening (1)
204

As just noticed above, energy levels of atoms are intrinsically broadened due 
to the Heisenberg uncertainty principle. A decaying state j does not have a 
perfectly defined energy Ej, but rather a superposition of states spread 
around Ej.

The longer the atom is in a state (dt high), the more precisely its energy can 
be measured (dE low). 

A large transition probability leads to a short life in the state (low dt) and a 
large energy uncertainty (high dE).

Thus, the spectral lines are broadened. This type of broadening is called 
natural broadening.



Natural Line Broadening (2)
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 The resulting absorption coefficients have the same form as the classical case, 
except that the classical damping coefficient  is replaced by , 
the Quantum Mechanical damping constant, the sum of all transition 
probabilities Aij for spontaneous emission.

𝜑𝜈 =
Γ/4𝜋

(𝜈 − 𝜈0)2 + (Γ/4𝜋)2

 𝜑 is the natural or Lorentz profile with FWHM (as before)

Δ𝜆 ൗ1
2

=
𝜆0

2

𝑐
Δ𝜈1/2 =

𝜆0
2

𝑐

Γ

2𝜋
≈ 𝑓𝑖𝑗 × 7 × 10−4 Å

 Still very small, since f  is at most of order unity! 

 Clearly other line broadening mechanisms should dominate.



Thermal (Doppler) broadening
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 The light emitting atoms in a stellar atmosphere are not at rest but have a thermal 
motion → Maxwellian velocity distribution.

 Because the particles produce Doppler shifts, the line-of-sight velocities have a 
distribution that is an important special case for spectroscopy:

where 𝑣𝑟 is the radial (line of sight) 
velocity component, and 𝑣𝑡ℎ is the 
most probable velocity  𝑣𝑡ℎ = 2𝑘𝑇/𝑚

 The frequency (wavelength) shift 
(linear Doppler effect) is related 
to 𝑣𝑟:

Δ𝜆

𝜆0
=

Δ𝜈

𝜈0
=

𝑣𝑟

𝑐

𝑑𝑁

𝑁
=

1

𝜋
𝑒−( Τ𝑣𝑟 𝑣𝑡ℎ)2 𝑑𝑣𝑟

𝑣𝑡ℎ



Doppler broadening
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 The distribution of  or  values gives us the shape of the absorption 
coefficient.

 Integrating the Maxwell distribution over all velocities, we obtain

𝜑(𝜈) =
𝜈0

𝑐 𝜋Δ𝜈𝐷

exp[ − (𝜈 − 𝜈0)2/Δ𝜈𝐷
2]

     substituting  𝑣𝑟 =
𝜈−𝜈0

𝜈0
𝑐    and   Δ𝜈𝐷 =

𝜈0

𝑐
𝑣𝑡ℎ =

𝜈0

𝑐

2𝑘𝑇

𝑚
     (the Doppler width)

 With 0׬

∞
𝜙 𝜈 = 1, we obtain the Gaussian line profile in terms of the Doppler 

width :

Again, the maximum is at 0.               Temperature dependency:  Δ𝑣th~ 𝑇

𝜑(𝜈) =
1

𝜋Δ𝜈𝐷

𝑒−(𝜈−𝜈0)2/Δ𝜈𝐷
2



Doppler broadening (FWHM)
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 We can again obtain the line FWHM via =1 where 

 (1)=1/2 (0) and then solve for the FWHM  = 1/2=2(1-0)

 This implies that    2 = exp[ (𝜈1 − 𝜈0)2/Δ𝜈𝐷
2]   or   (𝜈1 − 𝜈0)2 = Δ𝜈𝐷

2 ln 2

 Finally,     
Δ𝜈1/2 = 2(𝜈1 − 𝜈0) = 2Δ𝜈𝐷 ln 2 = 1.67Δ𝜈𝐷 = 2.139 × 1012 (𝑇/𝜇)/𝜆0(Å) Hz

 
                                                                                                      (μ is the atomic mass)

 In wavelength units       Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 = 7.1 × 10−7𝜆0(Å) (𝑇/𝜇) Å



Doppler broadening (example)
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 For the Sun, with T~6000K at H: 

    

i.e. in wavelength units    Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 = 7.1 × 10−7𝜆0(Å) (𝑇/𝜇) Å=

Δ𝜈1/2 = 2.139 × 1012 (𝑇/𝜇)/𝜆0(Å) =
𝜇=1



Doppler broadening (example)
210

 For the Sun, with T~6000K at H: 

    
i.e. in wavelength units

    or velocity units:

 This is much larger than the natural damping width of the line (10-4 Å), 
but still relatively small relative to some pressure broadening mechanisms 
(will discuss later).

 The atomic mass dependence in the denominator implies 
smaller line widths for metallic lines, e.g. a factor of (56)1/2 smaller for 
iron lines having wavelengths close to H.

Δ𝜈1/2 = 2.139 × 1012 (𝑇/𝜇)/𝜆0(Å) = 2.139 × 1012 6000/1)/6563 = 25.2 GHz

Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 =

(6563 × 10−8)2

3 × 108 25.2 × 109 = 0.36 Å

Δ𝑣1/2 = 𝑐
Δ𝜆1/2

𝜆0
= 3 × 105 km/s

0.36

6562
= 16.5 km/s
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There was a home work:

 When (at what temperatures, wavelengths) is 
spontaneous or induced emission stronger? 

Assume LTE (blackbody)

Comparison of induced and 
spontaneous emission



Spontaneous emission Stimulated emission

212

Spontaneous & Stimulated emission

o The system goes from an upper level u to a 
lower level l stimulated by the presence of a 
radiation field (hν  corresponding to the energy 
difference between levels u and l ).

o Stimulated emission occurs into the same state 
(frequency, direction, polarization) as the 
photon that stimulated the emission.

o The system goes from an upper level u to 
a lower level l spontaneously.

o Occurs independently of the radiation field.
o Emits isotropically.



Relation between Einstein coefficients
213

𝐴21

𝐵21
=

2ℎ𝜈21
3

𝑐2  →    𝐴21 = 𝐵21
2ℎ𝜈21

3

𝑐2

𝑔1𝐵12

𝑔2𝐵21
= 1 →  𝑔1𝐵12 = 𝑔2𝐵21

Einstein’s coefficients concern the probability that a particle spontaneously 
emits a photon, the probability to absorb a photon, and the probability to emit 
a photon under the influence of another incoming photon. 
Einstein’s coefficients are valid for all radiation fields.



Induced and Spontaneous emission
214

When is spontaneous emission stronger? 

Total amount of emitted photons per unit time at a given frequency is
Spontaneous emission: sp=n2A21

Stimulated emission:     st =n2B21 Jν

𝜂𝑠𝑝

𝜂𝑠𝑡
=

𝑛2𝐴21

𝑛2𝐵21𝐽
=

2ℎ𝜈21
3

𝑐2𝐽

𝐵𝜈 𝑇 =
2ℎ𝜈21

3

𝑐2
𝑒

h21
𝑘𝑇 − 1

−1

𝜂𝑠𝑝

𝜂𝑠𝑡
= 𝑒

h21
𝑘𝑇 − 1

𝑒
h21

𝑘𝑇 ≥ 2 ⇒  h21 ≥ 𝑘𝑇 ln 2  ⇒  λ∗ ≤
ℎ𝑐

𝑘𝑇 ln 2
=

2.076 × 108

𝑇
Å

At wavelengths shorter than  spontaneous emission is dominant

T=5777K → *41000 Å                 * =6563 Å  →  T31600K              * =4340Å  →  T48000K

TE: blackbody,  J=B(T )

𝐴21 = 𝐵21

2ℎ𝜈21
3

𝑐2

𝑔1𝐵12 = 𝑔2𝐵21
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Spectral line formation



Natural and Thermal Broadenings
216

From above:

 Natural Line Broadening:

     

Lorentzian profile with FWHM

 Doppler broadening 

Gaussian line profile with FWHM

𝜑𝜈 =
Γ/4𝜋

(𝜈 − 𝜈0)2 + (Γ/4𝜋)2

Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 =

𝜆0
2

𝑐

Γ

2𝜋
≈ 𝑓𝑖𝑗 × 7 × 10−4Å

Γ = ෍

𝑖<𝑗

𝐴𝑗𝑖

𝜑(𝜈) =
1

𝜋Δ𝜈𝐷

𝑒−(𝜈−𝜈0)2/Δ𝜈𝐷
2

Δ𝜈𝐷 =
𝜈0

𝑐
𝑢𝑡ℎ =

𝜈0

𝑐

2𝑘𝑇

𝑚

Δ𝜈1/2 = 1.67Δ𝜈𝐷

Δ𝜆1/2 =
𝜆0

2

𝑐
Δ𝜈1/2 = 7.1 × 10−7𝜆0(Å) (𝑇/𝜇) Å



Comparing broadenings

 Thermal (Doppler):
  th=0.02 Å (at  0=5000 Å, T=6000K,  Fe)
  th=0.5 Å   (at  0=5000 Å, T=50000K, H)

 Radiation damping:   
  FWHM=a few  10-4 Å

 But: decline of Gauss profile in wings is much steeper than for 
Lorentz profile:

 In the line wings the Lorentz profile is dominant

210 43

th

2 6

rad

Gauss (10 )         :        e 10

         

Lorentz (1000 ) :  1 1000 10

− −

−

 



 

217



Broadening mechanisms profiles
218

 Different broadening mechanisms have 
the form of 

 A Lorentzian function (natural profile and 
broadening, some pressure brodenings)

 A Gaussian function (thermal broadening, 
instrumental broadening, etc.)

 Other functions are possible (e.g., Linear 
Stark broadening)

 Generally, we have to consider both 
(all) types of profiles. For example, the 
pressure damping profile is negligible 
in the line core, but the Doppler profile 
decreases very steeply in the wings, 
whilst the damping profile decreases 
only as 1/2

 The Gaussian dominates the line core 
(or is confined to it), while the 
Lorentzian profile dominates in the line 
wings out to several times the FWHM.



Joint effect of different mechanisms
219

Mathematically: convolution

Properties:

 commutative:

 Fourier transformation:
where F denotes the Fourier transform of f.




−

−= dyyxfyfxff BABA )()())((

ABBA ffff =

i.e., in Fourier space the convolution 
is a multiplication

)()()( BABA fFfFnormfactorffF =



Application to profile functions
220

Convolution of two Gaussian profiles 

Result: Gauss profile with quadratic summation of half-widths.

Convolution of two Lorentzian profiles (e.g., radiation + collisional damping)

Result: Lorentz profile with sum of half-widths

𝐺𝐴 𝑥 =
1

𝐴 𝜋
 𝑒

−
𝑥2

𝐴2  𝐺𝐵(𝑥) =
1

𝐵 𝜋
 𝑒

−
𝑥2

𝐵2 

𝐺C(𝑥) = 𝐺𝐴(𝑥) ∗ 𝐺𝐵(𝑥) =
1

𝐶 𝜋
 𝑒

−
𝑥2

𝐶2  with 𝐶2 = 𝐴2 + 𝐵2

𝐿𝐴(𝑥) =
𝐴/𝜋

𝑥2 + 𝐴2
 𝐿𝐵(𝑥) =

𝐵/𝜋

𝑥2 + 𝐵2

𝐿𝐶(𝑥) = 𝐿𝐴(𝑥) ∗ 𝐿𝐵(𝑥) =
𝐶/𝜋

𝑥2 + 𝐶2  with 𝐶 = 𝐴 + 𝐵



Voigt profile
221

Convolving Gauss and Lorentz profile             (e.g. thermal + natural broadening)

𝐺 𝜈 =
1

Δ𝜈𝐷 𝜋
 𝑒

−
(𝜈−𝜈0)2

Δ𝜈𝐷
2  𝐿(𝜈) =

𝛾/4𝜋2

(𝜈 − 𝜈0)2 + 𝛾/4𝜋 2

𝑉 = 𝐺 ∗ 𝐿 depends on 𝜈, Δ𝜈, 𝛾, Δ𝜈𝐷:  𝑉(𝜈) = න

−∞

∞

𝐺(𝜈´) 𝐿(𝑣 − 𝜈´)𝑑𝜈´

Transformation: v: =
(𝜈 − 𝜈0)

Δ𝜈𝐷
𝑎: = 𝛾/(4πΔ𝜈𝐷) 𝑦: =

(𝜈´ − 𝜈0)

Δ𝜈𝐷

𝐺(𝑦) =
1

Δ𝜈𝐷 𝜋
 𝑒−𝑦2

 𝐿(𝑦) =
𝑎/Δ𝜈𝐷𝜋

𝑦2 + 𝑎2
 𝑉 =

1

Δ𝜈𝐷 𝜋

𝑎

𝜋
න

−∞

∞
𝑒−𝑦2

(v − 𝑦)2 + 𝑎2
𝑑𝑦

Def: 𝑽 =
𝟏

𝜟𝝂𝑫 𝝅
𝑯(𝒂, 𝐯) with 𝐻(𝑎, v) =

𝑎

𝜋
න

−∞

∞
𝑒−𝑦2

(v − 𝑦)2 + 𝑎2
𝑑𝑦

Voigt function, no analytical representation possible. 
(approximate formulae or numerical evaluation)

Normalization: න

−∞

∞

𝐻(𝑎, v)𝑑v = 𝜋



The Voigt func for various a (1) 
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0 2 4 6 8 10
10

10

10

10

10

 -4

 -2

 -5

 -3

 -1

1

= 0

 = 1.00

 = 0.10

 = 0.01

(Gauss)

The final form of the 
combined Voigt 
profile depends on   
= 2πa = /2D , 
the ratio of the 
damping widths /2 to 
the Doppler width D

As a rule of thumb, 
the damping wings 
start to contribute a 
distance –(log )D 
from the line centre 



The Voigt func for various a (2) 
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Voigt profiles The final form of the 
combined Voigt 
profile depends on   
= 2πa = /2D , 
the ratio of the 
damping widths /2 to 
the Doppler width D

As a rule of thumb, 
the damping wings 
start to contribute a 
distance –(log )D 
from the line centre 



Calculation of a Voigt profile
224

No analytical representation is possible, but…

 IDL:
IDL> u=findgen(201)/40.-2.5
IDL> v=voigt(0.5,u)
IDL> plot,u,v

 Python
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Spectral line formation



Other broadening mechanisms
226

There are numerous broadening mechanisms which 
influence the apparent shape of spectral lines:

1. Natural broadening    √
2. Thermal broadening  √
3. Microturbulence          √

(treated like extra thermal broadening)
4. Collisions (important for strong lines)
5. Isotopic shift, hfs, Zeeman effect

6. Macroturbulence
7. Rotation
8. Instrumental broadening

m
ic

ro
sc

o
p

ic
m

a
cr

o



Collisional and Pressure broadening

 The orbitals of an atom can be perturbed in a collision with a 
neutral atom (collisional broadening) or encounter with the 
electric field of an ion (pressure broadening). 
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Direct collisions?
228

 Collisions in the gas de-excite atoms  before they naturally decay, shortening its 
lifetime. 

 The resulting line profile is Lorenzian (as with natural broadening) with a width of 
1/2=1/(pt) where t is the time between collisions. 

 The number of collisions (per second) is the number of perturbers in the volume 
swept out by the atom, i.e. N𝑣. Since ½m𝑣2=3/2 kT, the time between collisions is

𝑡 ≈ 1/(𝑁𝜎 3𝑘𝑇/𝑚)

 So, the FWHM in terms of pressure (P=NkT ) is:

Δ𝜈1/2(Hz) = 𝑃𝜎/𝜋 3/𝑘𝑇𝑚 = 3.6 × 1019𝑃𝜎/ 𝑚𝑇/𝑚𝐻

 For the Sun (T=5800K, P=105 dyne/cm2), 
H atom direct collisions (=pa0

2=8x10-17 cm2) cause   Δ𝜈1/2 = 4 MHz

      i.e. less than the natural width
Δ𝜆1/2 =

𝜆0
2

𝑐
Δ𝜈1/2 = 5 × 10−5 Å



Impact broadening
229

 Nevertheless, the impact approximation can be used for 
some broadening mechanisms, which are important since 
atoms can interact without direct collision.

 The change in energy induced by the collision is a function of 
the separation r  between the absorber and perturbing 
particle, and can be approximated by a power law of the form 
E  Constant  r –n where n is an integer, such that the 
change in frequency is  =E/h =Cn r –n

Constants Cn are determined by laboratory measurements, or 
calculations.



Pressure broadening (1)

Two approximations exist – impact broadening for n>2 
(n=3 resonance, n=4 quadratic Stark effect, n=6 van der Waals) 
and a quasi-static approximation (i.e. surrounding particles are 
nearly at rest; for linear Stark broadening, n=2).

230

n = name interaction of

2

3

4

6

linear Stark effect

resonance broadening

quadratic Stark effect

van der Waals broadening

hydrogen-like ions + p, e

neutral atoms with each other, H+H

ions + e, p

metals + H

n

n

r

C
=



Pressure broadenings…

The orbitals of an atom can be perturbed in a collision with a 
neutral atom or encounter with the electric field of an ion. 

resonance broadening (n=3)
quadratic Stark effect  (n=4)               impact broadening approximations
van der Waals broadening (n=6)                           Lorentz profile 
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n = name interaction of

2

3

4

6

linear Stark effect

resonance broadening

quadratic Stark effect

van der Waals broadening

hydrogen-like ions + p, e

neutral atoms with each other, H+H

ions + e, p

metals + H

n

n

r

C
=

(Ansatz): constants Cn are
determined by laboratory                        Let‘s discuss in a bit more detail 
measurements, or calculations

Additional material for self-study



Collisional Broadening

 Frequency of collisions = 1/T0

 Suppose collisions occur if particles pass within distance = 
impact parameter ρ0

1

𝑇0
= 𝑁𝜋𝜌0

2𝑣

    N = #perturbers/cm3, v = relative velocity cm/s

 Then damping parameter is
Γ = 2𝑁𝜋𝜌0

2𝑣

232

We used =pa0
2  for direct collisions

Additional material for self-study



Weisskopf approximation (1)

 perturber is a classical particle

 path is a straight line

 no transitions caused in atom

 interaction creates a phase shift or frequency shift 
given by

Δ𝜔 =
𝐶𝑝

𝑟𝑝

 p exponents of astronomical interest: 3,4,6

233

Additional material for self-study



Weisskopf approximation (2)
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Atom

perturber path

t = 0 v=constant

Total phase shift

pp

p

pppp
v

C

tv

dt
C

r

dt
C 




12/222
][

)(
−

+

−

+

−

 =
+

==

]2/[ 

]2/)1[( 

p

p
p



−
= p

p ψp

2 π

3 2

4 π/2

6 3π/8

Additional material for self-study



Weisskopf approximation (3)

 Assume that only collisions that produce a phase shift > η0 are 
effective in broadening:
then impact parameter is

 Weisskopf assumed η0 =1 , yields damping

 

                                                 
depends on ρ, T    

 Ignores weak collisions  η < η0 
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Additional material for self-study



Better Impact Model: Lindholm-Foley
236

 Includes effects of multiple weak collisions, which 
introduce a phase shift Δω0 ; ΓLF > ΓW

 Impact theory fails for small ρ

22

00 )2/()(

)2/(
)(

+−−


=



p
I

p 3 4 6

Γ 2π2C3N 11.37 C4
2/3 v1/3 N 8.08 C6

2/5 v3/5 N

Δω0 0 9.85 C4
2/3 v1/3 N 2.94 C6

2/5 v3/5 N

Additional material for self-study



Impact broadenings (n=3,4,6)

 Resonance Broadening (n=3) occurs between identical species, restricted to 
upper/lower level having an electric dipole transition to ground state (resonance 
line):

 Quadratic Stark broadening (n=4): Interaction of electron or proton with a system 
without dipole moment. The frequency shift depends on the square of the local 
electric field generated by passing electrons. With C4 a constant obtained from 
laboratory data, 

 Van der Waals broadening (n=6): A momentary dipole on one neutral atom 
induces a change in lifetime, by inducing a dipole on the other. Because of its 
overwhelming abundance, neutral H acts as a perturber. For C6 a constant 
(excitation and ionization dependent),

iresreski Nfgg  22/1-30

2/1 )/(x106.8=
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Additional material for self-study



Example
238

A comparison of quadratic Stark 
and van der Waals broadening for 
the Na I 5890 line at various 

optical depths in the Sun. 

The latter dominates here, and 
greatly exceeds the natural width 
by a factor of about 30. 

In general,

 Quadratic Stark broadening (n=4) affects most lines in hot stars since 
electron pressure approaches gas pressure.

 Van der Waals broadening (n=6) affects most lines in cool stars since this 
involves interactions between neutral atoms

Additional material for self-study



Linear Stark broadening (n=2)

 Atoms do not generally have permanent electric dipole moments. 
If there were such a moment, the Stark effect would be linear.  
Such a moment can occur only for two or more levels of the same 
energy (they are degenerate) but different orbital quantum numbers. 
This happens only for single electron atoms (H, He+, Li 2+ , …). 

 The frequency shift depends on the the local electric field generated by 
passing electrons.

 Unfortunately, impact theory is no longer satisfactory and we have to 
consider the distribution of electric fields. In the star there is no 
a uniform field – there is an average field distribution felt by an average 
atom (statistical Stark effect). This distribution is called the 
Holtsmark distribution.

239

Additional material for self-study



Holtsmark Statistical Theory
240

 Ensemble of perturbers
instead of single

 more particles, more 
chances for strong field

 e- attracted to ions,
reduce perturbation by
Debye shielding

 in stellar atmospheres 
density is low, number of 
perturbers is large, and 
Holtsmark distribution is 
valid

Additional material for self-study



Hydrogen: Linear Stark Effect
241

 Each level degenerate with 2n2 sublevels.

 Perturbing field will separate sublevels. 

 Observed profile is a superposition of 
components weighted by relative 
intensities and shifted by field probability 
function.



where 1/2 is a half-width parameter widely 
used for plasma diagnostics (NIST).

 For Hα (n=2 to 3) in the Sun 
(Pe=20 dyne/cm2, T=5800K), 
 FWHM=0.5 Å, i.e. a width 1000 times the 
natural width.

 Hot stars have very high electron pressures, 
so the Linear Stark effect greatly affects H I 
lines in hot stars (including white dwarfs), 
and is also relevant for hydrogenic ions 

(e.g. He II lines) in O stars. 

Δ𝜆1/2 ≈ 2.5x10−9𝛼1/2𝑁𝑒
2/3



Linear Stark broadening: examples (1)

Example of linear Stark broadening in early B stars – increased H 
line width for increased pressure (this effect becomes significant for 
Teff>7500 K).

                                                                                                             I

                                                                                                           III

                                                                                                           V
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Vidal, Cooper & Smith (1973):

H I + p        quasistatic approach;

H I + e collisional approximation – in a core

quasistatic approach - in wings

Observations

(solid line) and theory

(dash line)

solar H

Linear Stark broadening: examples (2)



van der Waals broadening: example
244

Example: log C6 varies from -31.40 (top), -31.10 (middle), to -30.50 (bottom) 



New Developments in the Theory of Pressure-Broadening

 Linear Stark broadening

Stehle & Hutcheon (1999, A&AS, 140, 93) – tables of Stark profiles

 van der Waals broadening

Anstee & O’Mara (1995, MNRAS, 276, 859) and following papers

0,  - tabulated 

parameters

( )  pp −
−= )v/v( v2/)4()(4/4/ 00

2/

6 HN

Solar Ca I 6498, 6542

Observations and Theory of Anstee&O’Mara are consistent!

Dash line – approximation of Unsold (1955)

Additional material 

for self-study



 Resonance Broadening

Barklem et al. (2000, A&A, 363, 1091) 

Influence of resonance 

broadening on the line 

profiles of H and H

 Quadratic Stark broadening 

Papers by Dimitrijevic et al. 

Teff = 5780 K, log g = 4.44
Teff = 7000 K (grey)
Dash line: 
Without resonance broadening

H

H

Additional material for self-study



Broadening of spectral lines
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There are numerous broadening mechanisms which 
influence the apparent shape of spectral lines:

1. Natural broadening
2. Thermal broadening
3. Microturbulence 

(treated like extra thermal broadening)
4. Collisions (important for strong lines)
5. Isotopic shift, hyperfine splitting (hfs) ,

Zeeman effect

6. Macroturbulence
7. Rotation
8. Instrumental broadening

m
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Other broadening mechanisms

 Turbulent Broadening: In addition to microscopic (thermal) and 
macroscopic (rotation) motions, there are other motions in stellar 
atmospheres which are introduced, operating on microscopic 
(microturbulence) and macroscopic (macroturbulence) scales, via 
convolutions with Gaussian velocity distribution

 Isotope splitting: Different isotopes have different nuclear mass and so 
slightly different term energies – the effect is greatest for hydrogen (e.g. 
deuterium vs hydrogen).

 Zeeman splitting: Magnetic fields split magnetically sensitive lines – at 
optical wavelengths the splitting is seen as line broadening, towards the IR 
the splitting becomes more noticeable since it increases as 2 versus  for 
Doppler broadening.  

248



Turbulent broadening
249

 Added to thermal broadening in quadrature. The Gaussian 
line profile (normalized to unity) remains.
Recall the convolution of two Gaussian profiles!

where ξt is a microturbulence velocity.

 Note that the broadening because of microturbulence 
does not depend on the mass of an atom!



E I N S T E I N  C O E F F I C I E N T S

L I N E  P R O F I L E S :  N A T U R A L  B R O A D E N I N G

B R O A D E N I N G  O F  S P E C T R A L  L I N E S

N A T U R A L  L I N E  B R O A D E N I N G :

T H E R M A L  ( D O P P L E R )  B R O A D E N I N G

C O N V O L U T I O N  O F  D I F F E R E N T  B R O A D E N I N G   
P R O C E S S E S

P R E S S U R E  B R O A D E N I N G

I N G I S - T E L L E R  R E L A T I O N

R O T A T I O N A L  A N D  I N S T R U M E N T A L  B R O A D E N I N G
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Spectral line formation



Inglis-Teller relation

 Balmer lines, due to linear Stark broadening, overlap with each other 
close to the series limit, merging into a quasi-continuum at frequencies 
well below the nominal threshold.

 If linear Stark broadening is the dominant mechanism, one can 
estimate the Ne from the highest frequency Balmer line nmax that is still 
visible – the Inglis & Teller (1939) relation:

Balmer

e nN maxlog5.726.23log −=

Star SpT nmax Log Ne

 Cyg A2I 29 12.2

Sirius A2V 18 13.8

 Sco B0V 14 14.6

White dwarf DA 8 16.4

From Mihalas (1970)
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Inglis-Teller in White Dwarfs
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n=8



E I N S T E I N  C O E F F I C I E N T S

L I N E  P R O F I L E S :  N A T U R A L  B R O A D E N I N G

B R O A D E N I N G  O F  S P E C T R A L  L I N E S

N A T U R A L  L I N E  B R O A D E N I N G :

T H E R M A L  ( D O P P L E R )  B R O A D E N I N G

C O N V O L U T I O N  O F  D I F F E R E N T  B R O A D E N I N G   
P R O C E S S E S

P R E S S U R E  B R O A D E N I N G

I N G I S - T E L L E R  R E L A T I O N

R O T A T I O N A L  A N D  I N S T R U M E N T A L  
B R O A D E N I N G
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Spectral line formation



Thermal Doppler broadening describes the microscopic motion of individual 
particles in the atmosphere. The other scale extreme is macroscopic  
broadening of the lines caused by the rotation of the whole star. The maximum 
(critical) rotation velocity Vc = (GM/Re) where Re is the equatorial radius. 

 
Successive synthetic models 
allowing for Doppler and 
Stark broadening are shown 
here for 
Vrot sin i =0, 100, 200 km/s.

Rotational broadening
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Successive synthetic models allowing for Doppler and Stark broadening are 
shown here for Vrot sin i =0, 100, 200 km/s.

Rotational broadening
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Vrot sin i ?

Many early-type OB stars are observed to be rotating rapidly (Be stars 
close to critical rotation), so this is the major broadening mechanism in 
these stars. Why sin(i)?  Inclination is rarely known, except for 
eclipsing binaries.
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High (R=20,000),medium 
(R=2,000) and low (R=200) 
resolution Solar spectra at 
2microns.

Faint stars with intrinsically 
narrow lines are generally 
broadened the most by the 
spectrograph!

Any spectrograph used to observe a star has a finite resolution 
(R=/), regardless of the sharpness of the spectral line. For 
low resolution data (necessary when observing faint objects), 
this may affect the observed line profile more than everything 
else.

Instrumental Broadening



High (R=20,000), medium (R=2,000), and low (R=200) resolution Solar spectra at 
2microns.

Instrumental Broadening



Summary

 Final profile is a convolution of all the key broadening  processes.

 Convolution of Lorentzian profiles: Γtotal=ΣΓi

 Convolution of Lorentzian and Doppler broadening yields a Voigt profile.

• Pressure/collisional broadening via linear Stark broadening (only for 
hydrogenic ions), quadratic Stark broadening (interaction with electrons – 
hot stars) or Van der Waals broadening (interaction between neutral 
atoms – cool stars).

• Inglis-Teller relation allows estimate of Ne from overlapping Balmer lines 
in hot stars.

 Non-pressure broadening mechanisms include microscopic (thermal 
Doppler), macroscopic (rotational Doppler), turbulent, Zeeman, 
instrumental. 

 Line profiles typically have characteristic Voigt profiles – Gaussian 
(thermal) cores and Lorenzian (pressure) wings.
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S I M P L E  L I N E  T R A N S F E R

S C H U S T E R - S C H W A R Z S C H I L D  M O D E L

T H E O R Y  O F  L I N E  F O R M A T I O N

C U R V E  O F  G R O W T H
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Simple theory of line 
formation



Schuster-Schwarzschild model

We now turn to the solution of the transfer equation for both 
line and continuum radiation. We will adopt the Schuster-Schwarzschild 
model, which assumes that the line is formed above the continuum and that 
continuous opacity plays only indirect role.

The total absorption coefficient within an arbitrary line is the sum of the line 
(L) and continuum (C) contributions i.e. = L+C as is the total emission 
coefficient (= L+C). Hence, 

S=(L+C)/(L+C)

    and  

d= -(L+C) dz                  = L+C 

 So, we can write the transfer equation as usual:

cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆
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Line source function

• We have seen earlier that the emergent flux from the stellar surface is p times 
the Source function at an optical depth of  2/3:  

𝐹𝜆 0 = 𝜋𝑆𝜆 𝜏 = Τ2 3

• Across a line profile,  varies, being larger towards the centre. The condition 
=2/3 is true higher up in the atmosphere for  near line centre and 
holds for progressively deeper layers for  further into the wing. 

• Assuming S is a slowly varying function of  (i.e. constant over the line width),   
𝜋𝑆𝜆 𝜏1 = Τ2 3 = 𝐹𝜆(0) provides a mapping between F as a function of  and 
S as a function of  
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Theory of line formation

Because of larger absorption in the line, it is formed higher up in the 
atmosphere where T is lower => absorption line.

= L+C 

Consider weak lines: the layer =2/3 is close to the layer with C=2/3.

L << C     →   = C (1+L/C)

We can evaluate S by a Taylor expansion around the point C = :

𝑆𝜆(𝜏𝜆 = 2/3) ≈ 𝑆𝜆(𝜏𝐶 = 2/3) + ቤ
𝑑𝑆𝜆

𝑑𝜏𝑐 𝜏=2/3

Δ𝜏𝐶

 /C =  /C   →   C= (𝜏L+𝜏C)
C

L+C
≈

2

3

C

L+C
≈

2

3
1 −

L

C
  for L << C 

C= 𝜏λ+Δ𝜏C=
2

3
+Δ𝜏C            →          Δ𝜏C= −

2

3

L

C
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Such a line is 
called optically 
thin. 



Theory of line formation

The line equivalent width is then (LTE: 𝑆𝜆 = 𝐵𝜆)
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𝑊𝜆 = න
𝐹𝑐 − 𝐹𝜆

𝐹𝑐
𝑑𝜆 = න𝑑𝜆

𝐵𝜆(𝜏𝑐 = 2/3) − 𝐵𝜆(𝜏𝜆 = 2/3)

𝐵𝜆(𝜏𝑐 = 2/3)

𝑊𝜆 = න𝑑𝜆 ቤ
𝑑𝐵𝜆(𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

2

3

𝛼𝐿

𝛼𝐶

1

𝐵𝜆(𝜏𝑐 = 2/3)
=

𝑊𝜆 =
2

3
න𝑑𝜆 ቤ

𝑑 ln 𝐵𝜆 (𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

𝛼𝐿

𝛼𝐶

𝑊𝜆 =
2

3

1

𝛼𝐶
ቤ

𝑑 ln 𝐵𝜆 (𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

× න

0

∞

𝛼𝐿𝑑𝜆
Weakly depends on λ

If there is no temperature gradient with the 
temperature decreasing outwards, then there 
are no absorption lines in the spectrum.

The profile mimics the shape of αL. 
Line strength can be increased by 
decreasing the continuous absorption αC 

or by increasing the line absorption αL.

𝑆𝜆(𝜏𝜆 = 2/3) ≈ 𝑆𝜆(𝜏𝐶 = 2/3) −
2

3

L

C

ቤ
𝑑𝑆𝜆

𝑑𝜏𝑐 𝜏=2/3



Theory of line formation

For optically thin lines with L << C ,   WN 
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𝑊𝜆 =
2

3

1

𝛼𝐶
ቤ

𝑑 ln 𝐵𝜆 (𝜏𝑐 = 2/3)

𝑑𝜏𝑐 𝜏𝑐=2/3

× න

0

∞

𝛼𝐿𝑑𝜆

𝛼𝐿 = 𝜎𝐿𝑛,       𝑁 = ׬ 𝑛 𝑑𝑟 =
𝑛

𝛼𝐶
׬ 𝛼𝐶 𝑑𝑟 = 𝜏𝑐

𝑛

𝛼𝐶
≈

2

3

𝑛

𝛼𝐶
  ➔ 𝑊𝜆 ∝ 𝑁 



Strong lines

For L << C, the line is optically thin, and its strength increases 
proportionally with L /C. If L/C>1, the line becomes optically thick, 
reaching a maximum depth R. For very thick lines with L/C=, the 
intensity in the line centre is given by the source function S(=0), or 
B(= 0) in LTE. This is not zero since T(= 0) is non-zero. 

If non-LTE applies, when SB, S(=0) may tend towards zero, for instance, 
in resonance lines (arising from transitions between the ground states and  
the first energy level).
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Curve of Growth

 The Curve of growth describes how the equivalent width (line 
strength) W depends on the number of absorbing atoms or ions. 

 For weak, optically thin lines, as the abundance doubles, the line 
equivalent width also doubles in strength: 
WN – this is the LINEAR part of the curve of growth. 

 As the abundance continues to increase, the Doppler core of the line 
becomes optically thick and saturates. The wings of the line, which are 
still optically thin, deepen, which occurs with little change in the line 
equivalent width and so produces a PLATEAU in the curve of growth, 
W(ln N)1/2.

 Ultimately, the damping wings become optically thick, increasing the 
equivalent width, W(N)1/2. This is the DAMPING or SQUARE ROOT 
part of the curve of growth.
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Curve of Growth

268

Curve of growth for the K line of Ca II. As N increases, the functional 
dependence of the equivalent width changes.



Methodology

 Using the curve of growth and a measured 
equivalent width we can derive the number of 
absorbing atoms.

 The Boltzmann and Saha equations convert this 
value into the total number of atoms of that 
element in the photosphere → abundance.

 To reduce errors, it is advisable to locate several 
lines on a curve of growth
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Thermal and Pressure effects

The exact form of the curve of growth depends on the ratio of pressure to 
thermal broadening,  = / 2D. 

For increasing Doppler line width, saturation occurs for larger W, whilst the 
damping part will start earlier if  (i.e. ) is larger.
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S C A T T E R I N G  I N  L I N E S

T H E  M I L N E - E D D I N G T O N  M O D E L

R E S I D U A L  F L U X  O F  T H E  L I N E

A B S O R P T I O N  A N D  S C A T T E R I N G  L I N E S

S C H U S T E R  M E C H A N I S M  F O R  L I N E  E M I S S I O N  
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Transfer Equation 
including lines



Summary of simple line transfer

Simple line transfer:
The total absorption coefficient within an arbitrary line is the sum of the line (L) and 
continuum (C) contributions i.e. = L+C as is the total emission coefficient 
(= L+C). Hence, 

S=(L+C)/(L+C)
    and  

d= -(L+C) dz        = L+C 

 So, we can write the transfer equation as usual:       cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆

The surface specific intensity 

and surface flux 

are obtained as previously. 

Again, we need to know S( ) to evaluate these integrals.
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𝐼𝜆(0, 𝜃) = න
0

∞

𝑆𝜆 (𝜏𝜆)𝑒−𝜏𝜆 sec 𝜃 sec 𝜃  𝑑𝜏𝜆

𝐹𝜆(0) = 2𝜋 න
0

1

𝐼𝜆 (0, 𝜃)𝜇𝑑𝜇 =cos 
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Scattering in lines

 Special case: 
Coherent scattering: 1 = 2

 Common case: 
2-level atom absorbs photon with 
frequency 1, re-emits photon with 
frequency 2; frequencies not exactly 
equal, because
 levels a and b have non-vanishing energy width

 Doppler effect because atom moves

 Non-coherent scattering requires 
a redistribution function
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Transfer Equation including lines

Classical approach: 

absorption of photons by line has two parts

1. (1-ζ) of absorbed photons are scattered
   (e- returns to original state)

2. ζ of absorbed photons are destroyed
   (into thermal energy of gas)
   (for LTE: ζ =1)
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Resonance lines
(to/from the 
ground level)

A photon 1→2 
returns back to 
the radiation field, 
thus dominates 
Scattering

Subordinate 
lines (to/from 
higher levels)

A photon 3→4 
disappears,

thus dominates 
True absorption



Scattering
275

 Pure Absorption and Thermal Emission:

𝑺 𝝉 =
𝜺

𝜶
 𝐋𝐓𝐄: 𝜺𝒕𝒉 = 𝜶𝒕𝒉 𝑩(𝝉) 

 Pure Scattering:
For the case of pure scattering, the associated emission becomes completely 
insensitive to the thermal properties of the gas, and instead depends only on the 
local radiation field. If the scattering is roughly isotropic, the scattering emissivity 
𝜺sc in any direction depends on both the opacity and 
                                 the angle-averaged mean-intensity      𝜺sc =sc J=sc J 
This implies then that, for pure-scattering,

𝑺 𝝉 = 𝑱 𝝉

 Source Function for Scattering and Absorption:
The total opacity consists of both scattering and absorption,   abs+ sc

The total emissivity likewise contains both thermal and scattering components 
𝜺= 𝜺th + 𝜺sc= th B +sc J .   The general source function

𝑺 𝝉 = 𝜻𝑩 + (𝟏 − 𝜻)𝑱 𝝉
ζ≡

abs

abs+ sc

absorption fraction



The Milne-Eddington model (1)

Consider a case where at the given frequency the total opacity is a combination 
of both continuum and line processes:

Total absorption coefficient is  𝜶𝝂= 𝜶𝝂
𝑪 + 𝜶𝝂

𝑳 + 𝝈

                                                                 𝜶𝝂 × 𝝓𝝂= line opacity × line profile

The total optical depth is            𝒅𝝉𝝂 = −(𝜶𝝂
𝑪 + 𝜶𝝂

𝑳 + 𝝈) 𝒅𝒔

(larger than in the continuum!)

The correponding emissivities 𝜺𝝂 = 𝜺𝝂
𝑪 + 𝜺𝝂

𝑳 + 𝝈𝑱𝝂
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scattering in the continuum

𝜇
𝑑𝐼𝜈(𝜇)

𝑑𝜏𝜈
= 𝐼𝜈(𝜇, 𝜏𝜈) − 𝑆𝜈(𝜏𝜈) 𝜇

𝑑𝐼𝜈

𝑑𝑠
= −𝛼𝜈𝐼𝜈 + 𝜀𝜈

Recall radiative
transfer equation

=

𝑺 𝝉 =
𝜺

𝜶
 



The Milne-Eddington model

Transfer equation:

                                          -absorbed      +thermal    +scattered

𝜇
𝑑𝐼𝜈

𝑑𝑠
= −(𝛼𝜈

𝐶 + 𝛼𝜈
𝐿 + 𝜎)𝐼𝜈 + 𝜀𝜈

𝐶 + 𝜎𝐽𝜈 + 𝜁𝛼𝜈
𝐿𝐵𝜈 + (1 − 𝜁)𝛼𝜈

𝐿𝐽𝜈

                                                                        +therm. line em.   +scat. line emission (coherent)

Without dealing with the general case for the computation of all 
coefficients we assume:

• LTE in the continuum                        𝜀𝜈
𝐶 = 𝛼𝜈

𝐶𝐵𝜈(𝑇) 

• scattering negligible in the continuum    𝜎 ≪ 𝛼𝜈
𝐶
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𝜺 = 𝜺th + 𝜺sc= th B +sc J 

The following slides with light-grey backgrounds (like in this box) are for self-study. 
The derivation of equations will not be asked at the exam but will help understand 

the important results and conclusions.



The Milne-Eddington model (2)

Using    𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶           𝑑𝜏𝜈 = −(𝛼𝜈

𝐶 + 𝛼𝜈
𝐿) 𝑑𝑠 = −𝛼𝜈

𝐶(1 + 𝛽𝜈) 𝑑𝑠

𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝐵𝜈

1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
−

1 − 𝜁 𝛽𝜈

1 + 𝛽𝜈
𝐽𝜈 = 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

 𝜆𝜈 ≡
1+𝜁𝛽𝜈

1+𝛽𝜈
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𝜇
𝑑𝐼𝜈

𝑑𝑠
= −(𝛼𝜈

𝐶 + 𝛼𝜈
𝐿)𝐼𝜈 + 𝛼𝜈

𝐶𝐵𝜈 + 𝜁𝛼𝜈
𝐿𝐵𝜈 + (1 − 𝜁)𝛼𝜈

𝐿𝐽𝜈

Milne-Eddington Equation.
Solve at each frequency point 
across profile.

𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

destruction probability



The Milne-Eddington model (3)

Milne-Eddington assumptions (for analytical solution):

1. ,  and  are constant with depth

2. B is linear in continuum optical depth: Bν=a+bτc

Also, the Eddington approximation
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𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

𝐾𝜆(𝜏𝜆) =
1

3
𝐽𝜆(𝜏𝜆)



Lecture 6 Lecture 18
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Recap: Eddington approximation



Recap: Moments of intensity 
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 The mean intensity J is the directional average (over 4p steradians) of the 
specific intensity [0-th moment of intensity]:

𝐽𝜆 ≡
1

4𝜋
ර𝐼𝜆𝑑𝜔 =

2𝜋

4𝜋
න

−1

1

𝐼 𝜇 d𝜇 =
1

2
න

−1

1

𝐼(𝜇)d𝜇

 Eddington flux H,, is the directional average (over 4p steradians) of the 
projection of the specific intensity [1st moment of intensity]:

𝐻𝜆 =
1

4𝜋
ර𝐼𝜆 cos 𝜃 𝑑𝜔 =

2𝜋

4𝜋
න

−1

1

𝐼(𝜇) 𝜇 d𝜇 =
1

2
න

−1

1

𝐼(𝜇) 𝜇 d𝜇

 K-integral [2nd moment of intensity] :

𝐾𝜆 =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔 =

2𝜋

4𝜋
න

−1

1

𝐼(𝜇) 𝜇2 d𝜇 =
1

2
න

−1

1

𝐼(𝜇)𝜇2d𝜇

F - astrophysical flux
H - Eddington flux
F= pF=4pH



The Milne-Eddington model (4)

Multiply both sides by d and  d and integrate:
𝑑𝐻𝜈

𝑑𝜏𝜈
= 𝐽𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈)

𝑑𝐾𝜈

𝑑𝜏𝜈
= 𝐻𝜈 =

1

3

𝑑𝐽𝜈

𝑑𝜏𝜈

Differentiate again
𝑑2𝐾𝜈

𝑑𝜏𝜈
2 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈) =

1

3

𝑑2𝐽𝜈

𝑑𝜏𝜈
2
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𝜇
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝜆𝜈𝐵𝜈 − (1 − 𝜆𝜈) 𝐽𝜈

1

2
න

−1

+1

… [𝜇] 𝑑𝜇 × ×
1

2
න

−1

+1

… [𝜇] 𝑑𝜇

Eddington
approximation

F - astrophysical flux
H - Eddington flux
F= pF=4pH

න
0

∞ 𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 =

𝐹(𝜏)

4𝜋
= 𝐻(𝜏)

The third radiative equilibrium condition 



The Milne-Eddington model (5)

Bν is linear in τ, so zero second derivative 
𝑑2𝐵𝜈

𝑑𝜏𝜈
2 = 0

1

3

𝑑2𝐽𝜈

𝑑𝜏𝜈
2 =

1

3

𝑑2(𝐽𝜈 − 𝐵𝜈)

𝑑𝜏𝜈
2 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈)

This can be integrated to give

𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

Apply boundary condition at depth:
𝜏𝜈 → ∞ ⇒  𝐽𝜈 → 𝐵𝜈 ⇒  𝓑 = 𝟎
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1

3

𝑑2𝐽𝜈

𝑑𝜏𝜈
2 = 𝜆𝜈(𝐽𝜈 − 𝐵𝜈)



The Milne-Eddington model (6)

Now apply boundary condition at surface:

𝜏𝜈 = 0 ⇒  𝐽𝜈 = 𝐵𝜈 + 𝒜

From grey atmosphere solution, get J(τ=0):

284

𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

𝐽(𝜏) =
3

4𝜋
𝜏 + 𝑞(𝜏) 𝐹(0) = 3𝐻(0 +

1

3
) = 3𝐻

q() is a slowly varying 
function (Hopf function), 

with 𝑞 = Τ1 3 at =0 

Lecture 19



The Milne-Eddington model (7)

Now apply boundary condition at at surface:

𝜏𝜈 = 0 ⇒  𝐽𝜈 = 𝐵𝜈 + 𝒜

From grey atmosphere solution, get J(τ=0):

285

𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

  HHFqJ 3)
3

1
0(3)0()(

4

3
)( =+=+= 

p




The Milne-Eddington model (8)

Now apply boundary condition at at surface:

𝜏𝜈 = 0 ⇒  𝐽𝜈 = 𝐵𝜈 + 𝒜

From grey atmosphere solution, get J(τ=0):

From Bν=a+bτc   𝐽𝜈(τc = 0) = 𝐵𝜈 + 𝒜 = a+𝒜 =
1

3
ቚ

𝑑𝐽𝜈

𝑑𝜏𝜈 𝜏𝜈=0
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𝐽𝜈 − 𝐵𝜈 = 𝒜𝑒− 3𝜆𝜈𝜏𝜈 + ℬ𝑒 3𝜆𝜈𝜏𝜈

𝐽(𝜏) =
3

4𝜋
𝜏 + 𝑞(𝜏) 𝐹(0) = 3𝐻(0 +

1

3
) = 3𝐻

)0(
3

1
)0(

3

1

0










JH

d

dJ
==

=



The Milne-Eddington model (9)

1

3
ቤ

𝑑𝐽𝜈

𝑑𝜏𝜈 𝜏𝜈=0

=
1

3
−𝒜 3𝜆𝜈 +

𝑏

1 + 𝛽𝜈
= a+𝒜

can now solve for 𝒜!

𝒜 =

𝑏
1 + 𝛽𝜈

− 3𝑎

3 + 3𝜆𝜈

Define    𝑝𝜈 ≡
𝑏

1+𝛽𝜈
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𝐽𝜈 = 𝐵𝜈 + 𝒜𝑒− 3𝜆𝜈𝜏𝜈 = 𝑎 + 𝑏𝜏𝑐 + 𝒜𝑒− 3𝜆𝜈𝜏𝜈

𝐽𝜈(𝜏) = 𝑎 + 𝑝𝜈𝜏𝜈 +
𝑝𝜈 − 3𝑎

3 + 3𝜆𝜈

𝑒− 3𝜆𝜈𝜏𝜈



Thus, we obtained the fully analytic solution for the mean intensity

We can use this to obtain the emergent flux

The Milne-Eddington model (10)

Thermalization
depth

288

𝐽𝜈(𝜏) = 𝑎 + 𝑝𝜈𝜏𝜈 +
𝑝𝜈 − 3𝑎

3 + 3𝜆𝜈

𝑒− 3𝜆𝜈𝜏𝜈

𝐻𝜈 0 =
1

3
𝐽𝜈 0 =

𝑎

3
+

𝑝𝜈 − 3𝑎

3(1 + 𝜆𝜈)
=

𝑝𝜈 + 𝑎 3𝜆𝜈

3(1 + 𝜆𝜈)

𝑩𝝂

𝜏𝜈 ≳
1

𝜆𝜈

𝑱𝝂 → 𝑩𝝂

𝑱𝝂 < 𝑩𝝂 

in outer parts of 
atmosphere



Residual flux of the line

Residual flux (relative intensity)

𝑟𝜈 =
𝐹𝜈

𝐹𝑐
=

𝐻𝜈(0)

𝐻𝑐(0)

for continuum Hc:       𝛽𝜈 = 0 ⇒  𝑝𝜈 = 𝑏         𝜆𝜈 = 1

𝐻𝑐 0 =
1

3

(𝑏 + 𝑎 3)

2

𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3)

289

𝐻𝜈 0 =
𝑝𝜈 + 𝑎 3𝜆𝜈

3(1 + 𝜆𝜈) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 



Non-negligible scattering in continuum 

for continuum Hc:       𝛽𝜈 = 0 ⇒  𝑝𝜈 = 𝑏         𝜆𝜈 = 𝜻𝑪

𝐻𝑐 0 =
(𝑏 + 𝑎 3𝜁𝐶)

3(1 + 𝜁𝐶)

290

𝐻𝜈 0 =
𝑝𝜈 + 𝑎 3𝜆𝜈

3(1 + 𝜆𝜈) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
𝜻𝑪 + 𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝑟𝜈 =
𝑝𝜈 + 𝑎 3𝜆𝜈

𝑏 + 𝑎 3𝜁𝐶

1 + 𝜁𝐶

1 + 𝜆𝜈

without proof



Various special cases

This general result contains interesting behaviours in various special cases:

a) case 𝜁 = 1 (LTE: pure absorption lines)

b) case 𝜁 = 0 (extreme non-LTE: pure scattering lines)

c) Schuster Mechanism: Line Emission from Continuum Scattering Layer
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𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝑟𝜈 =
𝑝𝜈 + 𝑎 3𝜆𝜈

𝑏 + 𝑎 3𝜁𝐶

1 + 𝜁𝐶

1 + 𝜆𝜈



Pure absorption lines (LTE)

a) pure absorption in line: 𝜁 = 1

     For strong lines: 𝛽𝜈 ≫ 1

     For grey atmosphere, strongest lines:

                                                                                      a/b=2/3  →  r  0.54 

Thus, in LTE, the residual flux is non-zero even for strong 
absorption lines. However, resonance lines such as Na D 
have R~10-3 – 10-4
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𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
= 1 𝑟𝜈 =

𝑝𝜈+𝑎 3

 𝑏+𝑎 3
=

𝑏

1+𝛽𝜈
+𝑎 3

 𝑏+𝑎 3

Non-zero 
because we see 
Bν at upper level 
with non-zero 
temperature

𝑟𝜈 =
𝑎 3

 𝑏 + 𝑎 3
=

𝑎

 𝑏/ 3 + 𝑎
=

𝐵𝜈 (τ𝜈 = 0)

𝐵𝜈 (τ𝜈 = 1/ 3)
≠ 0

)0()
3

2
(

4

3
)(  

p
 FS +=



Pure scattering lines (extreme NLTE)

b) pure scattering in line: 𝜁 = 0

     For strong lines: 𝛽𝜈 ≫ 1, 𝑟𝜈 →  0
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𝑟𝜈 = 2
𝑝𝜈 + 𝑎 3𝜆𝜈

(1 + 𝜆𝜈)(𝑏 + 𝑎 3) 𝑝𝜈 ≡
𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
 

Bν=a+bτc 

𝜆𝜈 ≡
1 + 𝜁𝛽𝜈

1 + 𝛽𝜈
=

1

1 + 𝛽𝜈

𝑟𝜈 = 2

𝑏
1 + 𝛽𝜈

+ 𝑎
3

1 + 𝛽𝜈

(1 +
1

1 + 𝛽𝜈
)(𝑏 + 𝑎 3)

Scattering removes all photons 
→ no photon emerges from
surface. Cores of strong 
scattering lines are dark!



𝜁 = 1 (LTE) 𝜁 = 0 (non-LTE)
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The residual flux Rx vs frequency x



Line emission from continuum scattering layer

c) pure scattering in continuum:𝜻𝑪= 0

 If the line opacity is also pure scattering, 𝜻𝑳= 0, then 𝜆𝜈 = 0
 

But for 𝜻𝑳= 1 and for strong lines 𝛽𝜈 ≫ 1
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𝑟𝜈 =
𝑝𝜈 + 𝑎 3𝜆𝜈

𝑏 + 𝑎 3𝜁𝐶

1 + 𝜁𝐶

1 + 𝜆𝜈
𝑝𝜈 ≡

𝑏

1 + 𝛽𝜈

𝛽𝜈 ≡
𝛼𝜈

𝐿

𝛼𝜈
𝐶

Bν=a+bτc 

𝜆𝜈 ≡
𝜻𝑪 + 𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
=

𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
𝑟𝜈 =

1
1 + 𝛽𝜈

+
𝑎
𝑏

3𝜆𝜈

1 + 𝜆𝜈 

𝜆𝜈 ≡
𝜻𝑪 + 𝜁𝐿𝛽𝜈

1 + 𝛽𝜈
 

𝑟𝜈 =
1

1 + 𝛽𝜈
< 1

always in 
absorption𝑟𝜈 →

3𝑎

2𝑏
For a weak temperature gradient with 
small b/a, can exceed unity, implying a net 
line emission instead of absorption.



Line profiles for Schuster model
296

Scattering makes the continuum source function low near the surface, Sc(0) - Jc(0)≪B(0), 
which implies a weak continuum flux. The line can potentially be brighter, but only if the 
decline from the negative temperature gradient term is not too steep.



Summary
297

 We obtained Transfer Equation including lines and 
taking into account Scattering in lines.

 We solved it using the Milne-Eddington model.

 We then obtained Residual flux of the line.

 Finally, we discussed interesting special cases such 
as pure absorption and pure scattering lines.

 We also tried to explain emission lines applying 
Schuster mechanism for line emission.



N O N - L T E

S T A T I S T I C A L  E Q U I L I B R I U M

T W O - L E V E L  A P P R O X I M A T I O N

T H E  L I N E  S O U R C E  F U N C T I O N

L T E  V E R S U S  N O N - L T E
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Non-LTE



𝜁 = 1 (LTE) 𝜁 = 0 (non-LTE)
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From the previous lecture

In LTE, the residual flux is non-zero even for 
strong absorption lines because we see the 
star surface with non-zero temperature.

In non-LTE, no photon emerges from
surface due to scattering. Cores of strong 
scattering lines are dark!



LTE versus non-LTE?

 Most studies of stellar atmospheres are performed under LTE, where the 
thermodynamic state of the plasma is described via the Saha-Boltzmann 
equation as a function of local T and Ne. However, LTE strictly holds only 
deep in the interior when collisions dominate, and the photon mean-free-
path is small.

 For a more accurate physical description, the non-local nature of the 
radiation field and its interaction with the plasma 
has to be accounted for. This requires consideration of 
the detailed atomic processes for excitation and ionization, as expressed in 
the rate equations of statistical equilibrium (non-LTE case).

 Departure coefficients  b = pop(non-LTE)/pop(LTE)

300



The level populations of atoms are governed by the rates of all 
(collisional and radiative) processes, by which an atom leaves 
a certain state i to some other state j (if bound) or k (if unbound) and vice versa.

The total upward rate Pij=Cij+Rij, whilst the total downward rate is Pji=Cji+Rji

What does non-LTE mean?

Bound-bound Bound-free

RADIATIVE

Photoabsorption (Rij) Photoionization (Rik)

Spontaneous + stimulated

    emission             (Rji)

Spontaneous + stimulated 

    recombination   (Rki)

COLLISIONAL

Excitation           (Cij) Ionization          (Cik)

De-excitation      (Cji) Recombination  (Cki)
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LTE vs NLTE
302

 LTE: population numbers follow Saha-Boltzmann Equation
ni = ni (T, ne)

 NLTE: population numbers depend on radiation field
ni = ni ( T, ne, J )

 Need to take into account the sum of all processes that 
decrease and increase population for a given level i:

In stellar atmospheres typically:
dni / dt = 0 (stationary)

𝑑

𝑑𝑡
𝑛𝑖 = ෍

𝑗≠𝑖

𝑛𝑗𝑃𝑗𝑖 − 𝑛𝑖 ෍

𝑗≠𝑖

𝑃𝑖𝑗



Complete rate equations
303

For each atomic level i of each ion, of each chemical element we 
have:

                                In steady-state, 𝑑𝑛𝑖/𝑑𝑡=0

−𝑛𝑖

෍

𝑗>𝑖

𝑅𝑖𝑗 + 𝐶𝑖𝑗 +

෍

𝑗<𝑖

𝑅𝑖𝑗 + 𝐶𝑖𝑗

+ 

 ෍

𝑗>𝑖

𝑛𝑗 𝑅𝑗𝑖 + 𝐶𝑗𝑖 +

 ෍

𝑗<𝑖

𝑛𝑗 𝑅𝑗𝑖 + 𝐶𝑗𝑖

=
𝑑𝑛𝑖

𝑑𝑡

excitation and ionization

     rates out of i

de-excitation and recombination

de-excitation and recombination

     rates into i

excitation and ionization



Statistical equilibrium
304

 Statistical equilibrium, also known as rate equations:

𝑑𝑛𝑖

𝑑𝑡
= σ𝑗≠𝑖

𝑁 𝑛𝑗𝑃𝑗𝑖 − 𝑛𝑖 σ𝑗≠𝑖
𝑁 𝑃𝑖𝑗 = 

 

=σ𝑗≠𝑖
𝑁 𝑛𝑗 𝑅𝑗𝑖 + 𝐶𝑗𝑖 + 𝑛𝑝(𝑅𝑘𝑖 + 𝐶𝑘𝑖) − 𝑛𝑖 σ𝑗≠𝑖

𝑁 𝑅𝑖𝑗 + 𝐶𝑖𝑗 − 𝑛𝑖 𝑅𝑖𝑘 + 𝐶𝑖𝑘 = 0 

                         Lines                        Recombination                            Lines                            Ionization

 Particle conservation:

 By “non-LTE”, we refer to the solution of these equations of statistical 
equilibrium or rate equations. This is much more challenging 
computationally than LTE…

 Rate equations represent a non-linear system of equations, we look for the 
solution vector via linearization, based on Newton-Raphson iteration. 

෍

𝑖=1

𝑁

𝑛𝑖 = 𝑛𝑇



Two-level approximation
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Let’s consider schematic line-
formation cases with easy 
solution.

Consider an atomic model with 
only two important levels: 
lower l and upper u.

It is highly simplified: 
not accurate, but provide insight 
into the mechanisms at work in real stellar atmospheres. 
It well approximates the situation for some lines, e.g. resonance lines 
from the ground state.



Two-level approximation
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Rate equations (statistical equilibrium)

𝑛𝑖 ෍

𝑗≠𝑖

𝑁

𝑅𝑖𝑗 + 𝐶𝑖𝑗 − 𝑛𝑖 𝑅𝑖𝑘 + 𝐶𝑖𝑘 = ෍

𝑗≠𝑖

𝑁

𝑛𝑗 𝑅𝑗𝑖 + 𝐶𝑗𝑖 + 𝑛𝑝 𝑅𝑘𝑖 + 𝐶𝑘𝑖

                                      Lines                        Ionization                           Lines                   Recombination

Consider two levels u and l: isolating the transitions between them:

and neglecting all transitions involving j ≠ l,u, plus recombinations/ionizations:



Two-level approximation
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substituting for the R coefficients:

Einstein coefficients: 
nlBlu Jν= nuAul + nuBul Jν



Two-level approximation
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substituting for the R coefficients:

Einstein coefficients: 
nlBlu Jν= nuAul + nuBul Jν

Sanity check:
LTE case



Calculation of the line source function
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𝛼𝜈
𝑙𝑖𝑛𝑒 = (𝑛𝑙𝐵𝑙𝑢 − 𝑛𝑢𝐵𝑢𝑙)𝐽𝜈  𝜀𝜈

𝑙𝑖𝑛𝑒 = 𝑛𝑢𝐴𝑢𝑙𝐽𝜈

𝑆𝜈
𝑙𝑖𝑛𝑒 =

𝜀𝜈
𝑙𝑖𝑛𝑒

𝛼𝜈
𝑙𝑖𝑛𝑒

=
𝑛𝑢𝐴𝑢𝑙

𝑛𝑙𝐵𝑙𝑢 − 𝑛𝑢𝐵𝑢𝑙
=

𝐴𝑢𝑙

𝑛𝑙
𝑛𝑢

𝐵𝑙𝑢 −𝐵𝑢𝑙

Einstein Coefficients:

Note: this is the general expression for the line source function in NLTE. 
We have not made use of any equilibrium condition. 
It is always valid (not only in 2-level approximation). 

What is different in the general case, is how nl and nu are computed.



Calculation of the line source function
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Calculation of the line source function
311

Substituting nl/nu in Sν:



The line source function (1)
312

destruction probability

Photons are either destroyed
into thermal pool or scattered
photons are created in thermal 
processes

ζ≡
abs

abs+ sc

absorption fractionFrom the previous lecture:

𝑺 𝝉 = 𝜻𝑩 + 𝟏 − 𝜻  𝑱 𝝉

Now we obtained that Line source function has similar terms except that we also 
allow for non-coherent scattering



The line source function (2)
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Deep layers: collisions dominate               → ε’ >> 1 or ε = 1       thermal term dominant

                                                                                                                             LTE

Higher layers: collisions non-important → ε’0       or ε = 0       scattering term dominant  

 
                                                                                                                             Extreme non-LTE

From the previous lecture:  S = J for pure coherent scattering
now S = ∫ φ’ J’ d’ non-coherent scattering



Collisional rates (1)
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𝐶𝑢𝑙

𝐶𝑙𝑢
=

𝑔𝑢

𝑔𝑙
𝑒−(𝐸𝑢−𝐸𝑙)/𝑘𝑇

T is the kinetic 
temperature



Collisional rates (2)
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𝐶𝑢𝑙

𝐶𝑙𝑢
=

𝑔𝑢

𝑔𝑙
𝑒−(𝐸𝑢−𝐸𝑙)/𝑘𝑇

 Thus, if the excitations and de-excitations are due to collisions, the 
occupation numbers follow the Boltzmann formula for the kinetic 
temperature. 

 We can conclude that in gases with high enough densities to make 
collisional excitations and de-excitations more important than the 
radiative processes, the occupation numbers follow the Boltzmann 
formula for the kinetic temperature. 

 This means that the excitation temperature equals the kinetic 
temperature, which in turn means that the source function equals 
the Planck function for the kinetic temperature, which means 

we have LTE. 



Two-level approximation
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 Moving outward in the photosphere scattering term dominates.
 At some point we reach the region where photons are being lost from 

the star (small optical depth)

→ Jν decreases with height 
→ Sν decreases with height 
→ absorption line

 line absorption coefficient larger at line center → see higher layers
 wings form in deeper layers than line core

Wing can form in LTE conditions whilst a line core in non-LTE

 2-level atom is a special NLTE case
 In general, the coupling between J , ni and S is far more complicated



NLTE: Occupation numbers (1)
317

We obtain a system of linear equations for ni:

combine with equation of transfer:

non-linear system of integro-differential equations



NLTE: Occupation numbers (2)
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Iteration required:



LTE
319

LTE is a good approximation, if:

1) Collisional rates dominate for all transitions

2)  Jv =Bv   is a good approximation at all frequencies 

Rij<<Cij    so    Pij (= Rij + Cij) ~ Cij

Since Cij/Cji = (ni/nj)* 

Solution of rate equations -> LTE

ni Rij = nj Rji    so    ni/nj = (ni/nj)* 

Solution of rate equations -> LTE



Non-LTE
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LTE is a bad approximation, if:
1) Collisional rates are small
2) Radiative rates are large
3) Mean free path of photons is larger than that of electrons

 Large deviations from LTE may be expected for low density gas in 
which the radiation field deviates strongly from the Planck 
function for the kinetic temperature.

 Non-LTE needs to be considered for 
(a) hot stars, whose atmospheres are rapidly expanding 
(b) low density chromospheres and coronae of Solar-type stars 
(c) low Teff of very cool stars (in which electron densities are low)
(d) nebulae 
(e) ISM 



Non-LTE effects in scattering
321

 Deep in the atmosphere, collisions are frequent, radiation 
field is close to Planck and populations follow Boltzmann law. 
→ LTE.

 Close to the boundary, radiation can escape freely, density 
drops, collisional rates decrease, radiative rates are not 
enough to populate upper levels. 
As a result, the upper level can be underpopulated. 
Therefore, the source function deviates from Planck function.

 Even if the only scattering (no true absorption) occurs in the 
atmosphere, an absorption line forms.



LTE vs NLTE
322



Non-LTE in the Sun
323

 Chromosphere & corona in non-LTE, since the radiation field 
corresponds to a diluted Planck function for the effective 
temperature of the Sun, whilst the kinetic temperature in the 
coronae may be several 106 K.

 Photospheric departures from LTE occur. 
Weak lines of low-abundance species often show departures 
from LTE (e.g. they reverse to emission lines on the solar disc 
just inside the limb). Cores of strong lines may depart from 
LTE, while the wings may remain in LTE. 

 Non-LTE is most relevant in the Solar context via inaccuracies 
in elemental abundances obtained with the LTE assumption 
(typically 0.05 dex), although effect is greatest from 
comparison between latest 3D vs earlier 1D models.



Solar Oxygen abundance
324

 Until recently, commonly adopted 
Solar oxygen abundance was 
log(O/H)+12=8.93 suggested by 
analyses of [OI] 6300Å (Lambert 
1978) and OH lines in IR using 1D 
LTE models.

 Asplund et al. (2004) has used 3D 
analyses of the [OI] and OH lines, 
revealing significant departures 
from LTE, indicating a much lower 
abundance of log(O/H)+12=8.66. 

 Ar and Ne aren’t seen in the Solar 
photosphere, so deduced from 
coronal material, relative to 
oxygen. The decrease in oxygen 
also causes Ar and Ne to be scaled 
down. 



Consequences?
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The Solar metal mass fraction falls from Z=0.019 to Z=0.013,  
reconciling some long-standing problems (e.g. agreement with 
local ISM abundances, e.g. Orion nebula), BUT there is now a 
helioseismology (sound speed, density below convective zone) 
discrepancy for the Sun, which can be reconciled in following ways:

 Missing opacity from OPAL calculations? Need 7% at log T=6.4, 
though new OP calculations suggest <2.5% missing in OPAL. 

 Problems with diffusion in interior models?
 Problems with abundance of Ne (indirectly inferred from Ne/O in 

solar corona). Needs factor 3 increase!
 
 Overall, experience from Solar analysis suggests that determination 

of stellar abundances may be less certain than is normally 
considered!



Non-LTE for hot stars
326

Radiation field is so intense in hot 
stars (O-type, OBA supergiants, WDs) 
that their populations are only weakly 
dependent on local (Teff, Ne), 
consequently LTE represents a poor 
assumption. 

In O stars, LTE profiles are much too 
weak. Departure coefficients (non-
LTE/LTE-pop) shown here for 
n=1,2,3,4 for HeII can differ greatly in 
wind and photosphere, making 
HeI & HeII lines much stronger.



LTE vs NLTE in hot stars
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Difference between NLTE and LTE in 
Hγ line profile for an O-star model 
with Teff = 45000K and log g = 4.5

Difference between NLTE and LTE 
Hγ equivalent width as a function of 
log g for Teff = 45,000 K for 
subluminous O stars



LTE vs NLTE: hydrogen lines in IR
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Brackett lines



LTE vs NLTE: nitrogen lines
329



Non-LTE in OBA stars
330

 Hydrostatic equilibrium is invalid in OBA supergiants – 
their tenuous atmospheres lead to a drop in the line source 
function below LTE (Planckian) value.

 In the blue-violet spectra of B stars, some He I lines are 
formed in LTE, however red and IR lines are not collision 
dominated, instead photoionization-recombination processes 
dominate, so non-LTE is necessary. 

 In A supergiants, reliable metal abundance determinations 
require non-LTE treatment – lines become stronger in non-
LTE with corrections of up to factor of 10 for strong lines.



LTE vs NLTE in cool stars
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NLTE effects & stellar parameters

332



Summary
333

 If LTE does not hold, Saha-Boltzmann no longer describes 
excitation and ionization conditions – need to solve rate 
equations for statistical equilibrium – much more 
complicated!

 Non-LTE is necessary for hot stars, coronae of cool stars, 
M-type stars (as well as in nebulae and ISM).



Spectral type sequence
334



Spectral Types: temperature sequence
335



Line Broadenings
336

For example: 
Stark Effect



He and Metals
337

Metal are strongests when 
temperature is low enough that 
lower ionization stages are 
populated. 
The metal lines become
progressively stronger as the 
temperature cools and dominate 
in the F, G, K stars.

Helium is the second most 
abundant element, but only in the 
hottest stars (O and B) do He
atoms show up in their excited 
levels where they can absorb 
visible light. For the very hottest 
O stars we also see HeII lines.



Molecular Bands
338

For very cool stars (M, L, T type) the atmospheres are sufficiently cool that
simple molecules can form. These can absorb not only in electronic
transitions, but also in vibrational and rotational modes. These create
“bands” of absorption which can reduce the flux in vast portions of the
spectrum. In M stars, TiO is a common important molecule. In L and T
stars, other molecules such as CO, H2O and CH4 become important.



Relative Strength of Spectral Lines
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Spectral classification
340



H Y D R O S T A T I C  E Q U I L I B R I U M
G A S  P R E S S U R E

E L E C T R O N  P R E S S U R E

341

Towards the 
Model Photosphere



Model atmospheres (example)
342

Usual assumptions to start with:

1. Plane parallel geometry, making all 
physical variables a function of only one 
space coordinate.
2. Hydrostatic equilibrium, meaning that 
the photosphere is not undergoing large 
scale-accelerations comparable to the 
surface gravity; there is no dynamically 
significant mass loss.
3. Structures such as granulation or 
star spots are negligible, or at least can be 
adequately represented by mean values of 
the physical parameters.
4. Magnetic fields are excluded.



Ideal gas
343

We require a knowledge of the 
electron pressure in order to use the 
Saha equation, which is related to the 
gas pressure. How do we calculate this 
in stellar atmospheres?  

We start with hydrostatic equilibrium.

Forces acting upon the volume element 
of density  (r) are gravity:

𝑑𝐹𝑔 = −
𝐺𝑚(𝑟)𝑑𝑚

𝑟2 = −
𝐺𝑚(𝑟)𝜌(𝑟)

𝑟2 𝑑𝐴𝑑𝑟

plus buoyancy (pressure difference  
area):

𝑑𝐹𝑃 = −𝑑𝑃𝑑𝐴

Since the mass of the atmosphere is 
negligible compared to the stellar mass 
and the radius of the photosphere is 
negligible vs the stellar radius R,

𝑑𝐹𝑔 = −
𝐺𝑚(𝑟)𝜌(𝑟)

𝑅2 𝑑𝐴𝑑𝑟 = −𝑔𝜌(𝑟)𝑑𝐴𝑑𝑟

since

𝑔 =
𝐺𝑚(𝑅)

𝑅2

dr



Hydrostatic equilibrium
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Hydrostatic equilibrium is the balance between gravitational and pressure 
forces  (dFg+dFp=0). Then

𝑑𝑃

𝑑𝑟
= −𝑔𝜌(𝑟)

We can eliminate  (r) with the ideal gas equation, 𝑃g =
𝜌𝑘𝑇

𝜇𝑚𝑝
=

ℜ𝜌𝑇

𝜇

𝑑𝑃𝑔

𝑑𝑟
= −𝑔

𝜇(𝑟)

ℜ 𝑇(𝑟)
𝑃𝑔(𝑟)

where ℜ =
𝑘

𝑚𝑝
= 8.3×107 erg/mol/K is the gas constant

                                   μ - mean molecular weight



Pressure Scale Height
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We obtain
1

𝑃𝑔

𝑑𝑃𝑔

𝑑𝑟
=

𝑑 ln 𝑃𝑔

𝑑𝑟
= −

𝑔𝜇(𝑟)

ℜ𝑇(𝑟)

For an idealized isothermal (T(r)=constant) atmosphere with (r)=const, we 
can integrate this expression  

𝑃𝑔(𝑟) = 𝑃𝑔(𝑟0)𝑒−(𝑟−𝑟0)𝑔𝜇/ℜ𝑇 = 𝑃𝑔(𝑟0)𝑒−(𝑟−𝑟0)/𝐻

 where we have introduced the scale height H,

i.e. gas pressure changes by a factor of e over a scale height.

For a (ficticious) atmosphere of constant density, corresponding to the gas 
pressure at the base of the real atmosphere, we can put the total mass of the 
real atmosphere into a layer of height H.

𝐻 =
𝑘𝑇

𝑔𝜇𝑚𝑝
=

ℜ𝑇

𝑔𝜇



Examples
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Betelgeuse =1 (H) T=3600K Log g=0 H=4R


Sun =1 (H) T=6000K Log g=4.4 H=200 km

Earth =28 (N2) T=300K Log g=3 H=9 km

White Dwarf =0.5 

(H++Ne)

T=1.5x104 K Log g=8 H=0.25 km

Neutron Star =0.5

(H++Ne)

T=106 – 107 K Log g=15 H=2 mm



Gas Pressure Pg()
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When using the Saha equation, we need T and Pg in a particular layer of the 
atmosphere, which can be described by geometric depth t or optical depth . 
Temperature dependence on average optical depth is known

𝑇4( 𝜏 ) ≈
3

4
( 𝜏 +

2

3
 )𝑇𝑒𝑓𝑓

4

The average optical depth 𝑑 ҧ𝜏 = −𝜅𝑅𝜌 𝑑𝑟 may be expressed via the Rosseland 
mean opacity per unit mass (cm2/g), R .

 

Thus, we generally express the gas pressure as a function of optical depth. From 
hydrostatic equilibrium we obtain 

𝑑𝑃𝑔

𝑑𝑟
= −𝑔𝜌 𝑟  

𝑑𝑃𝑔

𝑑 ҧ𝜏
=

𝑔

𝜅𝑅

The gas pressure can now be obtained by integrating this differential equation, 
although in general R, is a complicated function of temperature and pressure. 



Integration of hydrostatic equation
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 In the simplest case, assuming a constant mean opacity (which is not a very 
sensible approximation, but ok for electron scattering), with  =0 and Pg=0 at the 
surface:

𝑃𝑔 =
𝑔

𝜅𝑅
ҧ𝜏

      Knowing T() for a given Teff, we can assume a value for R ,
      insert this into the above equation and compute a value for the gas pressure. 

 More realistically, for this differential equation can be obtained the following 
formal solution (look at the Gray textbook):

where 0 is the opacity at some reference wavelength (e.g. 5000Å). 

Guess Pg(0) for all 0 initially and then numerically evaluate the integral on the 
right for each 0 to obtain a better estimate of Pg(0) on the left-hand side. Iterate 
this procedure.

𝑑𝑃𝑔

𝑑 ҧ𝜏
=

𝑔

𝜅𝑅



Gravity dependence of Pg
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The pressure dependence inside 
the integral is weak and so

𝑃𝑔 ≈ 𝐶(𝑇)𝑔2/3

i.e. the gas pressure for a given 
optical depth increases with g2/3.

Increasing the surface gravity 
the photosphere compresses, 
increasing all pressures. 

For different stars we see down to 
 =2/3, whose pressure varies 
approximately as g2/3. 

The larger the pressure, the greater 
the Rosseland mean opacity, so we 
see geometrically higher layers in 
stars with higher gravity. 

Giants have deep atmospheres, 
dwarfs thin ones.



Electron pressure
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So far, we have dealt with the gas pressure, but it is the electron pressure that is 
needed in the Saha equation.

We can generally say, 

Pg=NkT 

where N is the sum of all particles/cm3 , and 

Pe=nekT 

with ne=number of electrons/cm3. Of course, 

ne=n++2n2+ +3n3+  etc. 

In the simplest case of pure hydrogen,

N=N (H)+N (H+)+ne=N (H)+2N (H+)=Pg /kT

since from charge conservation ne=N (H+). 

For ionized hydrogen, we find Pe=0.5Pg, For doubly ionized helium, Pe=2/3 Pg.

Given N (H+)ne / N (H)=f (T )  from Saha equation, we may solve for 
N (H+)=ne and N (H), if T and Pg are known. 



Numerical examples
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Numerical results show, that the 
gas pressure exponent is not 2/3, 
but ranges from 0.57 to 0.64 from 
shallow to deep layers.

The electron pressure dependence 
on gravity has two regimes, for 
cooler and hotter models. 
For solar-type stars, approximately, 
Pe

2  Pg, so an exponent of 1/3 
predicted, while for hotter stars 2/3. 

Numerical calculations show 0.48 to 
0.33 from shallow to deep layers in 

the cooler model, and 0.53 to 0. 82 in 

the hotter model  (Gray Fig. 9.13). 



Role of Metals?
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For a pure H atmosphere in the case of the Solar photosphere, the gas pressure greatly 
exceeds the electron pressure. Although metals are few in number, some are very 
easily ionized e.g. Na/H=210-6, Mg/H=310-5, Al/H=2.710-6, Ca/H=210-6, 
Si/H=310-5. These will contribute electrons to the atmosphere, increasing Pe and 
suppress ionization.



To calculate the electron density properly, all low ionization 
energy species and their corresponding abundances should be 
included. 

For ionized hydrogen, we find Pe=0.5Pg, 
For doubly ionized helium, Pe=2/3 Pg. 

Gas and electron pressures
353



Gas and electron pressures
354

Teff Log g Log Pg( =2/3) Log Pe( =2/3)

5500 4 4.83 1.01

6000 4 4.76 1.34

8000 4 3.94 2.46

10000 4 3.03 2.59

20000 4 3.40 3.09

40000 4 3.58 3.29



Radiation Pressure, Pr
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 Radiation may also have an effect on the pressure. 
Radiation is an inefficient carrier of momentum 
(velocities have the highest possible value), but 
when a photon is absorbed or scattered by matter, it 
imparts not only its energy to that matter, but also its 
momentum h/c. 

 Let’s now recall the definition of the K-integral and 
Eddington approximation (Lectures 7).



Summary
356

 Hydrostatic equilibrium – Pg changes by a factor of e=2.71 over the scale 
height.

 Pg(ρ) scales with g1/2 in Solar-type stars. 
Dwarfs have high Pg & high mean opacities (thin atmospheres) whilst 
(super)giants have low Pg and low mean opacities (deep atmospheres).

 Increased Pe in Solar-type stars from readily ionized metals versus pure H 
case. Ratio of electron to gas pressure is strong function of T.

 Radiation may also have an effect on the pressure! We discussed it in 
previous lectures.



D I R E C T  M E A S U R E M E N T  O F  R A D I I

D E T E R M I N I N G  E F F E C T I V E  T E M P E R A T U R E  A N D  
S U R F A C E  G R A V I T Y

M O D E L - I N D E P E N D E N T  M E T H O D S

M O D E L - D E P E N D E N T  M E T H O D S

A T M O S P H E R I C  M O D E L S

P H O T O M E T R I C  M E T H O D S

S P E C T R O S C O P I C  M E T H O D S

Measuring temperatures and 
surface gravities



Fundamental parameters
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Stellar parameters:
 Luminosity (L)

 Mass (M)

 Radius (R)

Atmosphere parameters:
 Effective Temperature (Teff)

 Surface gravity (log g)

 Chemical composition 
(metallicity, element abundances)

In most cases, cannot be measured directly

Can help in 
measuring L & M

~90% of stars in the Galaxy 
are “normal” (close to the Sun)



Surface Flux, Luminosity and Teff
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 Integral over frequency / wavelength at outer boundary (Surface Flux):

𝐹𝑠 = න
0

∞

𝐹𝑑

 Multiplied by stellar surface area yields the Luminosity, total energy 
radiated away by the star

𝐿 = 4𝜋𝑅2𝐹𝑠

 The total energy arriving above the Earth’s atmosphere is its observed 
flux,  F, corrected for the distance to the star d, neglecting interstellar 
absorption:

𝐿 = 4𝜋𝑑2𝐹⨁  →  𝐹𝑠 = 𝐹⨁(𝑑/𝑅)2

 The Stefan-Boltzmann law, F=Teff
4, or alternatively 𝐿/4𝜋𝑅2= Teff

4  
defines the “effective temperature” of a star, i.e. the temperature which a 
black body would need to radiate the same amount of energy as the star. 



Model-independent methods (1)

Direct measurements:

f  –  the flux measured at the Earth (F - bolometric flux at the Earth )
FS  –  the flux emitted from the stellar surface
d   –  the distance from us to the star
R   – the radius of the star
   –  the  angular radius of the star, R/d

4𝜋𝑑2𝐹⨁ = 4𝜋𝑅2𝐹𝑆

We can relate this equation to the effective temperature

𝐹⨁ = න

0

∞

𝑓⨁ 𝜈 𝑑𝜈 = 𝜃2𝜎𝑇𝑒𝑓𝑓
4

If   is measured and the distance d is known, e.g. from parallax (Gaia, Hipparcos, etc.), 
then we can obtain R and L.
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Example: 
 d = 1.3 pc, R = 700000 km

 = 0.004 arcsec !!



Inteferometric radii

 We have already introduced 
interferometry regarding limb darkening 
(Lecture 18). 

 Several ground-based optical and IR 
interferometers are currently in 
operation. 

 Reliable diameters generally restricted to 
nearby late-type giants with large 
angular radii on the sky. 

 Radii of a few hundred stars are 
measured with an accuracy better than 
10%.

 VLTI (Paranal, Chile): currently the most 
advanced optical/IR interferometer in 
operation. Combines large apertures of 
individual 8-m VLT telescopes with 
dedicated auxiliary 1.8-m telescopes.

 Imaging Atmospheric Cherenkov 
Telescopes (MAGIC, VERITAS, H.E.S.S., 
LST-1) are very promising
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Radii from other direct methods

 Occultations

 Moon used as “knife-edge”

 Diffraction pattern recorded as flux vs. time

 Precision ~ 0.5 mas

 A few hundred radii have been determined

 Eclipsing binaries

 Photometry gives ratio of radii to semi-major axes. Useful 
simulation at http://www.midnightkite.com/binstar/StarLightPro.exe

 Velocities from spectra give semi-major axes (i=90)

362

http://www.midnightkite.com/binstar/StarLightPro.exe


Binary Masses

Accurate radii and masses can be obtained from analysis of 
photometric light curves (R, I ) & spectroscopic orbit 
information (M sin3i ). If eclipsing i90  → R, M.

363

R136-38 (Massey et al. 2002, ApJ 565, 982) light curve analysis 
of O3V+O6V in LMC (P=3.4 day): 9.3𝑅⨀ (primary) 6.4𝑅⨀ (secondary)



Model-independent methods (2)

Direct measurements:

4𝜋𝑑2𝐹⨁ = 4𝜋𝑅2𝐹𝑆 𝑔 =
𝐺𝑀

𝑅2

𝐹⨁ = න

0

∞

𝑓⨁ 𝜈 𝑑𝜈 = 𝜃2𝜎𝑇𝑒𝑓𝑓
4

Difficult to reliably measure 𝐹⨁ because of interstellar 
absorption in UV (especially beyond the Lyman continuum)
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Model-dependent methods

Using, e.g., model atmospheres and/or theoretical evolution tracks.
 Teff from Bolometric Corrections 

 Lecture 17

 Log g from parallaxes

log g/g⊙=log M/M⊙+4 log Teff/Teff,⊙+0.4(Mbol-Mbol,⊙)

 Method of IR fluxes (Blackwell & Shallis 1977)

4𝜋𝑑2𝐹⨁ = 4𝜋𝑅2𝐹𝑆  →  
𝐹⨁

𝐹𝑆
=

𝑅2

𝑑2
= 𝜃2 =

𝑓⨁

𝑓𝑆

𝑇𝑒𝑓𝑓
4 =

𝐹⨁

𝜃2𝜎

Alonso et al. : Teff (IRFM) for 1000+ stars

365

Also correct for 
monochromatic 
fluxes



Atmospheric Models
366

Model atmospheres (Teff, log g, chem. composition)

Specific Intensities  ()

Emergent Fluxes ()

UBVRI…   (U-B),(B-V),(V-R),…      W     Line profiles 

Observations



Atmospheric Models (1)

 For most stars, Kurucz LTE atmosphere models, accounting 
for “line blanketing” from metals, generally suffice 
http://kurucz.harvard.edu/grids.html 

 For early-type stars, several non-LTE line blanketed models 
exist: TLUSTY http://tlusty.oca.eu for plane-parallel O stars, 
or for O stars with extended atmospheres WMbasic
https://www.usm.uni-
muenchen.de/people/adi/Programs/Programs.html

 For very late-type stars, opacity from molecules are 
important e.g. PHOENIX 
http://phoenix.astro.physik.uni-goettingen.de
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Kurucz models
368



Atmospheric Models (2)

 To determine Teff and log g, one has to use spectral 
characteristics which are insensitive to chem. composition.

 At least one parameter should have a stronger dependence 
on Teff than on log g, and another one in the opposite way.

 The more parameters the better.

 If Teff is fixed, then 𝑔 =
𝐺𝑀

𝑅2 =
4𝜋𝐺𝑀𝜎𝑇𝑒𝑓𝑓

4

𝐿
     →      𝐿~

𝑀

𝑔
𝑇𝑒𝑓𝑓

4  

using L~Mn, we get g~M (1-n)
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g – a luminosity criterium



Photometric Methods
370

Alternative photometric 
systems to Johnson UBV 
are available – notably 
Strömgren (1963) ubvy.

These are narrower filters 
and are rather more 
useful in extracting Teff 
and log g than UBV.



UBV versus uvby photometry

A comparison of synthetic Kurucz models for the Balmer jump in 
B dwarfs with the usual Johnson UBV filters (left) and Strömgren 
ubvy filters (right). The U filter is sensitive to radiation on both 
sides of the discontinuity, whilst the narrow Stromgren u filter 
samples light below 3647 & v  filter samples light above, so the 
u-v colour provides Teff .
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Teff  from photometry

➢ The slope of the Paschen continuum, F4000/F7000

➢ c1 = (u – v) – (v – b) for А0 stars and earlier f (Teff)

➢ b – y, B – V, V – K for F stars and later

Photometric Methods

372



Photometric Methods
373

B – V 

b – y 

very
good

bad

very
good

bad

Kurucz atmosphere models

c1 = (u – v) – (v – b)

goodbad

very
good

Teff

Teff



Temperatures from photometry
374

Observed B-V colour index generally allows Teff for normal stars (0<B-V<1.5):

 log 𝑇𝑒𝑓𝑓 = 3.988 − 0.881(𝐵 − 𝑉) + 2.142(𝐵 − 𝑉)2 − 3.614(𝐵 − 𝑉)3

 +3.2637(𝐵 − 𝑉)4 − 1.4727(𝐵 − 𝑉)5 + 0.26(𝐵 − 𝑉)6

Beyond this range most flux is 
originating in the UV or IR so 
B-V becomes insensitive to 
temperature.



Spectroscopic methods
375

Equivalent Widths of Balmer lines

Good indicators of Teff 
when Teff <9000 K

If Teff  is higher, then
indicators of log g.

Kurucz atmosphere models

H 



Spectroscopic methods
376

Wings of strong metal lines
Broadening: 

Cool stars - Van der Waals 

Hot stars - Quadratic Stark

Good indicators of g: 
G, K, M stars: Na D, Ca I 4226, Mg I 5172, 5183

F, A, B stars: resonance lines Ca II, Mg II
Mg I 5183 

5182 5183 5184 5185 5186

0.2

0.4

0.6

0.8

1.0

HD 134169
= 5930 K, [Fe/H] = -0.86Teff log g = 3.98 ± 0.20

For example, Mg I 5183 is a 
good indicators of log g
when Teff <6000 K.

Mg I 5183 Log g = 3.78
             3.98,
             4.18



Spectroscopic methods
377

Equivalent Width ratios of species in two consecutive 
ionization states
G, K, M stars: Fe I and Fe II

O, B stars: He I and He II, Si III and Si IV

He I 4471/ He II 4511

He I 4471/ He II 4511 can be 
an indicator of both Teff and log g

log g



Examples

The different criteria for determining
Teff and log g are collected in the
corresponding parameter plane 
with the final stellar parameters
obtained from
the mean intersection point

37
8



Summary

 Radii directly measured from interferometry (e.g. VLTI) if 
distance known from parallax (e.g. Gaia). Currently 
restricted to K & M giants.

 Masses/radii directly measured from close binaries. 
Otherwise, reliant upon models…

 Balmer jump sensitive to Teff and Ne in F & G stars. 
(Discontinuity decreases with increasing Ne due to 
greater role of H- ion)

 Balmer jump sensitive to Teff in A & B stars (negligible 
role of H- ion)

 Balmer jump absent in O stars (e.s. dominates opacity) 
so need to use line spectrum.
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