
Recap: Equations of radiative equilibrium
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 The 1st equation of radiative equilibrium:

𝐹 𝑥 = 𝐹 0 = 𝑐𝑜𝑛𝑠𝑡 = 𝜎𝑇𝑒𝑓𝑓
4

i.e. the total flux must be constant at all depths of the photosphere (conservation of energy):
dF/dt =0 or dF/dx =0 or dF/d =0

 The 2nd equation of radiative equilibrium:
the total energy absorbed (RHS) must equal the total energy re-emitted (LHS) if no heating or cooling is 
taking place:
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 The 3rd radiative equilibrium condition:

න
0

∞ 𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 =

𝐹(𝜏)

4𝜋

 All the three radiative equilibrium conditions are not independent. 
S that is a solution of one will be the solution of all three.



The depth dependence of the source function 
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 In a grey atmosphere, with 𝐾(𝜏) = 0

∞
𝐾𝜆 𝑑𝜆,  the 3rd equation implies:

 We can differentiate this, and insert our earlier result:

 Integration of the equation with respect to  gives    K()=c1+c2 

where dK/d = c1 = F/4

 For a given F, we now have two equations, [1] and [2], to determine the three 
unknowns: J, S and K (or c2). We need an additional relation between two of these 
variables in order to determine all three. 

𝑑𝐾(𝜏)

𝑑𝜏
=

𝐹(𝜏)
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𝑑𝜏
= 𝐽(𝜏) − 𝑆(𝜏) = 0

a new unknown function K()
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Eddington approximation (1)
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 Previously we have seen that for the determination of the flux the anisotropy in 
the radiation field is very important because in the flux integral the inward-going 
intensities are subtracted from the outward-going ones, due to the factor  cos.

 But for K, a small anisotropy is unimportant because the intensities are multiplied 
by the factor cos2 , which does not change sign for inward and outward radiation. 

 To evaluate K or c2, we can approximate the radiation field by an isotropic 
radiation field of the mean intensity J: I = J (by definition). From the definition of 
K we obtain

4𝜋 𝐾𝜆 = ර𝐼𝜆 𝜏𝜆, 𝜃 cos2 𝜃 𝑑𝜔 = 𝐽𝜆 𝜏𝜆 රcos2 𝜃 𝑑𝜔 =
4𝜋

3
𝐽𝜆(𝜏𝜆)

or after division by 4,

This approximation for the K-function is known as 
the Eddington approximation.

𝐾𝜆(𝜏𝜆) =
1

3
𝐽𝜆(𝜏𝜆)

d = sinθ dθ dφ



Eddington approximation (2)
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 Inserting the Eddington approximation into the above equation
we find

 Since the mean intensity J equals the source function S in a grey atmosphere, 
integrating the latter result we obtain

 From the conditions of radiative equilibrium, we finally obtained the law for the 
depth dependence of the source function (for a grey atmosphere assuming 
the Eddington approximation). We can evaluate C using boundary condition for 
the known emerging flux (there is no flux going into the star), plus we assume the 
outward intensity does not depend upon  :
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3

4𝜋
𝜏𝐹(0) + 𝐶 = 𝐽(𝜏)

𝐹 𝑥 = 𝐹 0 = 𝑐𝑜𝑛𝑠𝑡



Eddington approximation (3)
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 Boundary condition: there is no flux going into the star, 
i.e. I (0,) = I– = 0 for /2 <  < 

 We also assume that the outward intensity does not depend upon , 
i.e. I (0,)= I+ = const for  0 <  < /2

 It gives 

 Hence C=J(0)= F(0)/2 so:

 To find the depth dependence of T, we also need to assume LTE.
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In LTE, the source function is the Planck function, S ()=B ()=T 4/

Recall that F(0)=T 4eff, by definition, so

or

We derived the temperature dependence on optical depth. 
Note T ( =2/3) = Teff as we obtained earlier, and T4(=0)=Teff

4 / 2

A complete solution of the grey case, using accurate boundary conditions, without 
Eddington approximation, leads to a solution only slightly different from this, usually 
expressed as 

Here q() is a slowly varying function (Hopf function), with
𝑞 = Τ1 3 = 0.577 at  =0 to q=0.710 at  = . 
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Temperature structure of the grey 
atmosphere
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Comparison between T( ) in 
the Solar atmosphere using the 
simplifying Eddington 
assumption (solid) versus the 
exact grey case (dashed) using 
the Hopf function, q( ):

Grey Temperature Structure

𝑞(𝜏) ≈ 0.710 − 0.133𝑒−2𝜏
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 How good an approximate is the 
grey atmosphere? Next we must 
look at the frequency dependence 
of the sources of opacity.

 The grey temperature distribution 
is shown here versus the 
observed Solar temperature 
distribution as a function of 
optical depth  at 5000Å (D. Gray, 
Table 9.2)

 The poor match is because the 
opacity is wavelength dependent, 
as we shall see next lecture.

How realistic is this?
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Summary

 Three equations of radiative equilibrium can be derived: 
(a) constant flux with depth; 
(b) energy absorbed equals energy emitted; 
(c) the K-integral is linear in .

 From these, the grey temperature distribution T() may be 
derived, assuming: 
(a) the Eddington approximation and 
(b) LTE, in reasonable agreement with the exact case.

 On the next lecture, we will discuss LTE in more detail.
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M A X W E L L I A N V E L O C I T Y  D I S T R I B U T I O N

B O L T Z M A N N  E Q U A T I O N

S A H A E Q U A T I O N

Local Thermodynamic Equilibrium 
(LTE)



Thermodynamic Equilibrium (TE)
82

 Interaction of radiation and matter is the most important 
physical process in stellar atmospheres.

 To find 𝑰𝝀 we need to know 𝛼𝜆and  (or k and j) – absorption 
and emission coefficients.

 To find 𝛼𝜆and , density ρ, temperature T, and chemical 
composition X are not enough. We need to know 
distributions of atoms over levels and ionization states, 
which depend on radiation 𝑰𝝀.

 In TE, ρ, T, and X fully determine 𝛼𝜆and .



Local Thermodynamic Equilibrium
83

In Thermodynamic Equilibrium:

1. All particles have Maxwellian distribution in velocities 
(with the same temperature T ).

2. Atom populations follow Boltzmann law ( same T ).

3. Ionization is described by Saha formula ( same T ).

4. Radiation intensity is given by the Planck function ( same T ).

5. The principle of detailed equilibrium is valid (the number of direct 
processes = number of inverse processes).

In Local thermodynamic equilibrium (LTE), 
1-3 are applied locally.

The radiation spectrum can in principle be very far from 
Planck function.



LTE
84

In the study of stellar atmospheres, the assumption of 
Local Thermodynamic Equilibrium (LTE) is described by:

1. Electron and ion velocity distributions are Maxwellian.

2. Excitation equilibrium is given by Boltzmann equation 
(introduced today).

3. Ionization equilibrium is given by Saha equation 
(introduced today).

4. The source function is given by the Planck function

𝑆𝜆 = 𝐼𝜆 = 𝐵𝜆(𝑇) i.e. Kirchoff’s law    𝑗𝜆 = 𝜅𝜆𝐵𝜆(𝑇)



Is LTE a valid assumption?
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 For LTE to be valid, the photon and particle mean free paths 
need to be much smaller than the length scale over which these 
temperature changes significantly. 

 Radiation cannot play a role in defining atom populations and 
ionization state. Collisions should dominate. 

 Generally, when collisional processes dominate over radiative 
processes in the excitation and ionization of atoms, the state of 
the gas is close to LTE. 

 Consequently, LTE is a good assumption in stellar interiors, 
but may break down in the atmosphere. If LTE is no longer 
valid, all processes need to be calculated in detail via non-LTE. 
This is much more complicated, but needs to be considered in 
some cases (see later in course).



Mean Free Path
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 In the Sun, the characteristic 
distance over which the 
temperature varies (the 
temperature scale height) 
is 500km. 

 How does this scale 
compare with the average 
distance travelled by an 
atom before hitting 
another atom?

 Two hydrogen atoms will 
collide if their centres pass 
within a radius of 2 Bohr 
radii (2ao) of each other. The 
collision cross-section of the 
H atom is 
 =(2ao)=3.5x10-16 cm2.

 The mean free path between 
collisions is λ=1/( n(H)).



Mean free path in the solar photosphere
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 The density of the Solar 
photosphere is  = 2.5x10-7

g/cm3 so the number of H 
atoms/cm3 is 
n(H)=/mH=1.5x1017 cm3

where mH is the mass of the 
H atom. 

 Then the mean free path 
between collisions is 
λ=1/(n(H))=0.02 cm. i.e. 
atoms are confined within a 
limited volume of space in 
the photosphere at 
effectively fixed temperature 
(relative to the temperature 
scale height).

In the upper layers, → 0, λ , radiation dominates over collisions → out of LTE



Mean Free Path in the Sun

Since the photosphere is the layer visible from 
Earth, photons must be able to escape freely into 
space. After ~1021 scatterings and re-emissions 
(thousands years!) from the centre. 
Calculate the time needed for a photon to escape!



The Random Walk 
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 As the photons diffuse upward 
through the stellar material, they 
follow a haphazard path called a 
random walk. Figure shows a 
photon that undergoes a net 
vector displacement d as the result 
of making a large number N of 
randomly directed steps, each of 
length l (=λ, the mean free path). 

 It can be shown that for a random 
walk, the displacement d is related 
to the size of each step, l, by

𝑑 = 𝑙 𝑁.
 This implies that the distance from 

the cenre of a star to the surface is
D= l  N

 This is why the transport of 
energy through a star by radiation 
may be extremely inefficient. 



LTE
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As noticed above, LTE is described by:

1. Maxwellian electron and ion velocity distributions.

2. Excitation equilibrium given by Boltzmann equation.

3. Ionization equilibrium given by Saha equation.

Let’s discuss them.



Maxwellian velocity distribution

Gas pressure is produced by the motions of the gas 
particles.  The velocities of particles are distributed 
in a Maxwellian distribution (also called  
the Maxwell–Boltzmann distribution).

Because the particles produce Doppler shifts, the line-of-sight velocities 
have a distribution that is an important special case for spectroscopy:

where vR is the radial (line of sight) velocity component. 
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Maxwellian velocity distribution

The maximum of the 
speed distribution 
occurs at v1 (the most 
probable velocity):

The average velocity, 
v2, is

The root mean square 
velocity, v3, is

92



Boltzmann equation

For excited levels u and l of e.g. atomic hydrogen, the Bolzmann equation 
relates their population (occupation) numbers as follows:

𝑵𝒖

𝑵𝒍
=

𝒈𝒖

𝒈𝒍
𝒆−(𝑬𝒖−𝑬𝒍)/𝒌𝑻

where ul =Eu–El is the energy difference between the levels, gu & gl are their 
statistical weights (see next slide), k=8.6174x10-5 eV/K is the Boltzmann constant. 

1

6
5
4

3

2

E
n

er
g

y

Eion

bound states, „levels“

free states

ionization limit

93



94

In the “ground state” 
(n=1), “first excited 
state” (n=2), and all 
other excited states of 
H more than one 
quantum state may 
have the same energy. 

The number of  these 
for orbital n is the 
statistical weight, gn, 
(also known as the 
degeneracy). 

Boltzmann equation may also be written as:

log
𝑁𝑢

𝑁𝑙
= log

𝑔𝑢

𝑔𝑙
−

5040

𝑇
𝜒𝑢𝑙(𝑒𝑉)  = 5040/T



Hydrogen
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For H, orbital n has a statistical weight 
of gn=2n2 – the various permutations for 
n=1 and n=2 are listed here, with statistical 
weights g1=2 and g2=8, respectively.

l=0…n-1 azimuthal quantum number
ml=magnetic quantum number with -l≤ml ≤ l
ms=electron “spin” angular momentum ±1/2

Transition energy between levels u and l:

𝜒𝑢𝑙 = 𝐶
1

𝑢2
−

1

𝑙2

where C=ion=-13.6 eV



An exceptionally high T is required for a significant number of H atoms to have 
electrons in their 1st excited states. The Balmer lines (involving an upward transition 
from n=2 orbital) reach a peak strength at spectral class A (≈10000K) 

so why do the Balmer lines diminish in strength at higher temperatures? 

We need Saha equation to answer this question.

Balmer lines
96



Balmer lines
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The degree of ionization of any atom or ion can be obtained from the Saha equation, which can 
be derived from the Boltzmann formula if we extend it to states with positive energies, i.e., 
to free electrons with the appropriate statistical weights 
(the upper state is now an ion plus free electron, with energy ion+1/2mev2).

The statistical weight of the ion in the ground state plus electron is the product of the statistical 
weight of the ion g1

+ and the statistical weight of the electron ge:       gion+e = g1
+ ge

The degree of ionization of an atom 
98

ionization limit



The statistical weight of the ion in the ground state plus electron is the product of the 
statistical weight of the ion g1

+ and the statistical weight of the electron ge: 

gion+e = g1
+ ge

The (differential) statistical weight of the electron, ge, i.e. the number of available 
states in interval (v,v+dv) is (from quantum mechanics)

𝑔𝑒 =
1

𝑁𝑒

8𝜋𝑚𝑒
3𝑣2𝑑𝑣

ℎ3

The 1/Ne factor comes from the space volume element. It is the volume per electron.

Inserting this into Boltzmann’s equation, we arrive at the Saha equation:

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3 𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

This relates the ground state populations of the atom and ion. 

The Saha Equation
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The Saha equation (Meghnad Saha 1920):

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

This relates the ground state populations of the atom and ion. 

To derive the ratio of the total number of ions (N+) to the total number of 
atoms (N0) we can use the conventional Boltzmann formula for each level n
of the atom and ion, Nn/N1 and Nn

+/N1
+ i.e..

𝑁𝑛

𝑁1
=

𝑔𝑛

𝑔1
𝑒−𝜒𝑛/𝑘𝑇

𝑁𝑛
+

𝑁1
+ =

𝑔𝑛
+

𝑔1
+ 𝑒−𝜒𝑛

+/𝑘𝑇

The Saha Equation
100



Partition function (1)
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If N0 is the sum of all neutral particles in their different quantum states:.

We find:

where we have introduced u0 , the partition function of the atom. This is the 
weighted sum of the number of ways it can arrange its electrons with the 
same energy - e.g. all H is in the ground state for the Solar case, so u02 
(the ground state statistical weight). Similarly for the ion, 

𝑢+(𝑇) = 𝑔1
+ + 

𝑛=2

∞

𝑔𝑛
+ 𝑒−𝜒𝑛

+/𝑘𝑇

For H+, u+=1, since no electrons left. 

𝑁0 =
𝑁1

0

𝑔1
(𝑔1 + 

𝑛=2

∞

𝑔𝑛 𝑒−𝜒𝑛/𝑘𝑇) =
𝑁1

0

𝑔1
𝑢0(𝑇)

𝑁0 = 𝑁1
0 + 

𝑛=2

∞

𝑁𝑛
0 = 𝑁1

0 +
𝑁1

0

𝑔1


𝑛=2

∞

𝑔𝑛 𝑒−𝜒𝑛/𝑘𝑇

𝑁+ = 𝑁1
0 +

𝑁1
+

𝑔1
+ 𝑢+(𝑇)



Partition function (2)
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If we multiply N1
+/N1

0 from earlier by N+/N1
+ and N1

0/N0 we again obtain 
the Saha equation:

𝑁+𝑁𝑒

𝑁0
=

2𝑢+

𝑢0

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇 = 4.83 × 1015

𝑢+

𝑢0
𝑇3/2𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

In logarithmic form Saha equation can be written as:

log
𝑁+

𝑁0
= log

𝑢+

𝑢0
+ log 2 +

5

2
log 𝑇 − 𝜒𝑖𝑜𝑛Θ − log 𝑃𝑒 − 0.48

where ion is measured in eV, =5040/T and the electron pressure Pe is related 
to the electron density via the ideal gas law (Pe=NekT). In stellar atmospheres, 
Pe lies in the range 1 dyn/cm2 (cool stars) to 1000 dyn/cm2 (hot stars). 

High temperature favours ionization, high pressure favours recombination.

Note that 1dyn/cm2=0.1N/m2 (SI units), so for SI calculations the final constant is -1.48 instead of -0.48



Partition functions (Gray App D2)
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 = 5040/T



log 𝑢 (𝑇) = 𝑐0 + 𝑐1 log Θ + 𝑐2 log2 Θ + 𝑐3 log3 Θ + 𝑐4 log4 Θ

Partition functions (Gray, old edition)

 = 5040/T
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Ionization Potentials
105



We can use the Saha equation to study the degree of ionization of H in general in 
stellar photospheres. The fraction of ionized hydrogen to the total is defined below. 
We find that H switches from mostly neutral below 7000K to mostly ionized above 
11000K for typical Ne.  This allows us to understand why hydrogen lines are 
strongest in A-type stars, with temperatures of 7500-10000K.

Degree of ionization of H in stars
106

𝐻+

𝐻
=

𝐻+

𝐻0 + 𝐻+
=

Τ𝐻+ 𝐻0

1 + Τ𝐻+ 𝐻0

𝑁+𝑁𝑒

𝑁0 = 2.4 × 1015 𝑇3/2𝑒−158000/𝑇

Using 1eV per particle, the hydrogen is
heated from 0 to 104 K. Supplying 13.6 eV
more, the temperature increases only up to
2104 K. Ionization is an extremely energy
consuming process. Ionization happens
within a very small temperature interval.



Hydrogen:

Iron:

Degree of ionization in stars
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As temperature increases, ionization 
occurs rather abruptly. In a stellar 
photosphere, elements exist mainly in 
just two ionization stages.



From today’s first example, a very high 
T was required to populate level n=2
of H relative to the ground state. We 
can now use the Boltzmann & Saha
equations to measure H(n=2)/H(total) 
as a function of T.  For increasing T, the 
n=2 population increases due to the 
Boltzmann equation, reaching a 
maximum value around 10,000K 
(equivalent to A spectral type) and 
then reduces as H becomes mostly 
ionized. This is why A stars have 
strong Balmer lines.

Strong Balmer lines in A stars – why?
108

Note: He in stellar atmospheres complicates 
this calculation since ionized He provides 
excess electrons with which H ions can 
recombine, so it takes higher temperatures 
to achieve the same degree of ionization.



Strong lines in Solar photosphere
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Ca II in the Sun
110

The photosphere of the Sun has only two calcium atoms for every million 
H atoms, yet the Ca II H and K lines (produced by the ground state of 
singly ionized calcium, Ca+) are stronger than the Balmer lines of H 
(produced by the 1st excited state of neutral H). Why?



Saha-Boltzmann applied to Ca 
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From the Saha equation we can find that H is essentially neutral in the Solar photosphere: 

Pe=200 dyn/cm2, χion=13.6 eV,  =5040/(T=5777)=0.872, the partition function u0=2, u+=1 (i.e. log u+=0)

log
𝑁+

𝑁0
= log 𝑢+ − log 𝑢0 + log 2 +

5

2
log 𝑇 − 𝜒𝑖𝑜𝑛𝛩 − log 𝑃𝑒 − 0.48 = −5.235 → 𝑁+/𝑁0 ≈ 0.0006%

yet from the Boltzmann formula log
𝑁𝑢

𝑁𝑙
= log

𝑔𝑢

𝑔𝑙
−

5040

𝑇
𝜒𝑢𝑙(𝑒𝑉):   H(n=2)/H(n=1)=5x10-9

i.e. very little H is available to produce Balmer absorption lines. 

For Ca, ion=6.1 eV, and partition functions may be determined from tables (Slide 104) via

log 𝑢 (𝑇) = 𝑐0 + 𝑐1 log Θ + 𝑐2 log2 Θ + 𝑐3 log3 Θ + 𝑐4 log4 Θ

For =5040/T=0.872, the partition function of neutral Ca
log 𝑢0 (𝑇) = 0.075 − 0.757 log Θ + 2.58 log2 Θ + 3.53 log3 Θ − 1.65 log4 Θ

i.e. u0=1.3.  Similarly, u+=2.3. 

log
Ca+

Ca0
= log

2.3

1.3
+ log 2 + 9.40 − 5.34 − 1.18 − 0.48 = +2.95 → Ca+/Ca0 ≈ 900

Essentially all Calcium is singly ionized.
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Essentially all Calcium is singly ionized. 

N(Ca+) in the first excited state relative to 
the ground state (g1=2, g2=4, =3.12eV) is 
1/265 from Boltzmann eqn, so nearly all 
Calcium in the Sun’s photosphere is in the 
ground state of Ca+. 

Combining these results: 

N(Ca+
g.s.)/N(Hn=2)= N(Ca+

g.s.)/N(Ca) x N(Ca)/N(H) x N(H)/N(Hn=2)=400

There are 400 times more Ca+ ions with electrons in the ground-state (which 
produce the Ca II H&K lines) than there are neutral H atoms in the first excited state 
(which produce Balmer lines). 

The Ca II lines in the Sun are so strong due to T dependence of excitation and 
ionization (not high Ca/H abundance).

Saha-Boltzmann applied to Ca 



More from Saha
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 Another observational effect that can be understood using the Saha
equation is that supergiants and giants have lower temperatures
than dwarfs of the same spectral type.

 Spectral classes are defined by line ratios of different ions, e.g. 
He II 4542A / He I 4471 for O stars. At higher temperatures the 
fraction of He II will increase relative to He I, so the above ratio will 
increase. 

 However, supergiants have lower surface gravities (or pressure) 
than main-sequence stars, so from Saha equation a lower Pe at the 
same temperature will give a higher ion fraction, N+/N 0

 Assuming a given spectral class corresponds to a fixed ratio N+/N 0, 
a star with a lower pressure can have a lower Teff for the same ratio 
and spectral class



Summary
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 LTE = Maxwell + Boltzmann + Saha.

 Boltzmann equation describes degree of excitation of an atom or 
ion, e.g. N (Hn=2)/N (Hn=1).

 Saha equation describes degree of ionization of successive ions, e.g. 
N (He+)/N(He0) or N (He2+)/N (He+).

 The Partition function is the weighted sum of the number of ways 
an atom or ion can arrange its electrons with the same energy.

 Ionization is an extremely energy consuming process. Ionization 
happens within a very small temperature interval.

 Saha-Boltzmann explains the spectral type (or temperature) 
dependence of lines in stellar atmospheres, e.g. Strongest Balmer
series at spectral type A and strong CaII lines in Solar-type stars.
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