Recap: Equations of radiative equilibrium

The 1%t equation of radiative equilibrium:

F(x) = F(0) = const = anff

i.e. the total flux must be constant at all depths of the photosphere (conservation of energy):
dF/dt=0ordF/dx=0ordF/dr=0

e The 2™ equation of radiative equilibrium:
the total energy absorbed (RHS) must equal the total energy re-emitted (LHS) if no heating or cooling is

taking place: . .
f K) S)Ld}{ — f K)l]ld}{
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e The 3" radiative equilibrium condition:

Jm%cu:m)
o Aty 41

o All the three radiative equilibrium conditions are not independent.
S, that is a solution of one will be the solution of all three.




The depth dependence of the source function

e Inagrey atmosphere, with K(7) = | Ooo K, dA, the 3" equation implies:
dK(t) F(7)
dt  4m

a new unknown function K(r)

e We can differentiate this, and insert our earlier result:

d’K(r) 1 dF(7)

dt2 o AT dT =](T) _S(T) =0 [1]

 Integration of the equation with respect to 7 gives K(t)=c,t+c, [2]
where dK/d7=c,=F/4n

e For a given F, we now have two equations, [1] and [2], to determine the three
unknowns: /, S and K (or c,). We need an additional relation between two of these
variables in order to determine all three.




Eddington approximation (1)

* Previously we have seen that for the determination of the flux the anisotropy in
the radiation field is very important because in the flux integral the inward-going
intensities are subtracted from the outward-going ones, due to the factor cosé.

» But for K, a small anisotropy is unimportant because the intensities are multiplied
by the factor cos?#, which does not change sign for inward and outward radiation.

e To evaluate K or c,, we can approximate the radiation field by an isotropic
radiation field of the mean intensity J: I = ] (by definition). From the definition of
K, we obtain

4
A K; = %IA(Q, 0) cos? 0 dw = J,(13) fcos2 0dw = ?n],l(r,l)

or after division by 4, do = sinf d9 de

1
Ky(ty) = §]A(T/1)

This approximation for the K-function is known as
the Eddington approximation.




Eddington approximation (2)

e Inserting the Eddington approximation into the above equation
we find

dK(t) 1dj(r) F(7) _ dj(r) 3
dt 3 dr 4w - “ dt _47TF(T)

dK(t) F(7)
dt  4nm

* Since the mean intensity / equals the source function S in a grey atmosphere,
integrating the latter result we obtain F(x) = F(0) = const

3
S(t) = ETF(O) +C =]J(1)

e From the conditions of radiative equilibrium, we finally obtained the law for the
depth dependence of the source function (for a grey atmosphere assuming
the Eddington approximation). We can evaluate C using boundary condition for
the known emerging flux (there is no flux going into the star), plus we assume the
outward intensity does not depend upon &:




Eddington approximation (3)

e Boundary condition: there is no flux going into the star,
ie.1(00)=I=0fornt/2<0<m

e We also assume that the outward intensity does not depend upon 6,
i.e.1(0,0)=1I"=const for 0<0<m/2

e [tgives J(0) = %ff = %F(O)

3
S(r) = ETF(O) +C=]J(7)

o Hence C=/(0)= F(0)/27 so: /

13 1 : 3 2 |
SO =—GT+IFO)  =— ' S(T) = 4—(T+§)F(O) :
i T :

To find the depth dependence of T, we also need to assume LTE.




Temperature structure of the grey
atmosphere

In LTE, the source function is the Planck function, S (t)=B (t)=cT*/n

B = IT4(1) =~ (v + D)F(0 @ =@+ DO |

(1) = s () = 4 ( 3) © S(T)_E(H?F(O)

Recall that F(0)=cT “, by definition, so
1 3 2 2 |
—oT*(t) = - (t+)oTdy  OF T*(1) ==(t + §)Te4ff

We derived the temperature dependence on optical depth.
Note T'(7=2/3) = T, as we obtained earlier, and T*(7=0)=T,4* / 2

A complete solution of the grey case, using accurate boundary conditions, without
Eddington approximation, leads to a solution only slightly different from this, usually
expressed as

3
T*(7) = 7 [T+ q(D]TS,

Here g(1) is a slowly varying function (Hopf function), with
q =1/v3 =0.577 at =0 to ¢g=0.710 at 7= oo,




Grey Temperature Structure

Comparison between T(7) in
the Solar atmosphere using the
- simplifying Eddington
assumption (solid) versus the
exact grey case (dashed) using
the Hopf function, g( 7 ):
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q(t) ~ 0.710 — 0.133e~27
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How realistic is this?

 How good an approximate is the t0 - . —— . . .
grey atmosphere? Next we must - A
look at the frequency dependence - e
of the sources of opacity.

e The grey temperature distribution
is shown here versus the
observed Solar temperature
distribution as a function of
optical depth zat 50004 (D. Gray,
Table 9.2) °

T (K) / 10°

Grey case

e The poor match is because the
opacity is wavelength dependent,
as we shall see next lecture.




Summary

e Three equations of radiative equilibrium can be derived:
(a) constant flux with depth;
(b) energy absorbed equals energy emitted;
(c) the K-integral is linear in .

e From these, the grey temperature distribution 7(t) may be
derived, assuming:

(a) the Eddington approximation and
(b) LTE, in reasonable agreement with the exact case.

e On the next lecture, we will discuss LTE in more detail.




Local Thermodynamic Equilibrium
(LTE)

O

MAXWELLIAN VELOCITY DISTRIBUTION
BOLTZMANN EQUATION
SAHA EQUATION




Thermodynamic Equilibrium (TE)

» Interaction of radiation and matter is the most important
physical process in stellar atmospheres.

» To find I, we need to know «;and ¢, (or k, and j,) — absorption
and emission coefficients.

* To find oyand ¢,, density p, temperature 7, and chemical
composition X are not enough. We need to know
distributions of atoms over levels and ionization states,
which depend on radiation I ;.

e InTE, p, T, and X fully determine «;and &,.




Local Thermodynamic Equilibrium

In Thermodynamic Equilibrium:

1. All particles have Maxwellian distribution in velocities
(with the same temperature T).

Atom populations follow Boltzmann law ( same T).
Ionization is described by Saha formula ( same T').
Radiation intensity is given by the Planck function ( same T').

The principle of detailed equilibrium is valid (the number of direct
processes = number of inverse processes).

o1 A~ W N

In Local thermodynamic equilibrium (LTE),
1-3 are applied locally.

The radiation spectrum can in principle be very far from
Planck function.




LTE

In the study of stellar atmospheres, the assumption of
Local Thermodynamic Equilibrium (LTE) is described by:

1. Electron and ion velocity distributions are Maxwellian.

2. Excitation equilibrium is given by Boltzmann equation
(introduced today).

3. lonization equilibrium is given by Saha equation
(introduced today).

4. The source function is given by the Planck function

Sy =1,=B)(T) ie.Kirchoff’'slaw j; = k;B;(T)




Is LTE a valid assumption?

e For LTE to be valid, the photon and particle mean free paths
need to be much smaller than the length scale over which these
temperature changes significantly.

e Radiation cannot play a role in defining atom populations and
ionization state. Collisions should dominate.

e Generally, when collisional processes dominate over radiative
processes in the excitation and ionization of atoms, the state of
the gas is close to LTE.

e Consequently, LTE is a good assumption in stellar interiors,
but may break down in the atmosphere. If LTE is no longer
valid, all processes need to be calculated in detail via non-LTE.
This is much more complicated, but needs to be considered in
some cases (see later in course).




Mean Free Path
¢ In the Sun, the characteristic

n = particle number density distance over which the
temperature varies (the

G temperature scale height)
6 G G is ~500km.
e How does this scale

A\ = mean free path between collisions compare with the average
distance travelled by an

6 J, ____________________ atom before hitting
_______________________________ another atom?

............. _G
T G ¢ Two hydrogen atoms will
G collide if their centres pass
— 2 : within a radius of 2 Bohr
O = 7(2r)" cross section G radii (2a,) of each other. The

collision cross-section of the
G H atom is
6 o=n(2a,)=3.5x10-16 cm?.

* The mean free path between
collisions is A=1/(on(H)).




Mean free path in the solar photosphere

6 n = particle number density
e The density of the Solar

G photosphere is p = 2.5x107
G G G g/cm?3 so the number of H

atoms/cm3 is
n(H)=p/my=1.5x1017 cm?
A = mean free path between collisions ‘}’I"};‘Eg‘;an is the mass of the

6 J.G_, _________________ G ¢ Then the mean free path

TR A — between collisions is
_____________ - A=1/(on(H))=0.02 cm. i.e.

T atoms are confined within a
limited volume of space in

_ ) . G the photosphere at
O = 7(2r)* cross section effectively fixed temperature
G relative to the temperature

(
G 6 6 scale height).

In the upper layers, o — 0, A T, radiation dominates over collisions = out of LTE

-
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Mean Free Path in the Sun 3
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. —the solar interior—

loyers dravn to scole

Since the photosphere is the layer visible from

Earth, photons must be able to escape freely into

space. After ~102! scatterings and re-emissions
(thousands years!) from the centre. iiogan
Calculate the time needed for a photon to escape! ~ *"
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The Random Walk

As the photons diffuse upward
through the stellar material, they
follow a haphazard path called a
random walk. Figure shows a
photon that undergoes a net
vector displacement d as the result
of making a large number N of
randomly directed steps, each of

length [ (=), the mean free path).

It can be shown that for a random
walk, the displacement d is related
to the size of each step, [, by

d = I\/N.

This implies that the distance from
the cenre of a star to the surface is

D=1xN

This is why the transport of
energy through a star by radiation
may be extremely inefficient.




LTE

As noticed above, LTE is described by:

1.  Maxwellian electron and ion velocity distributions.
2. Excitation equilibrium given by Boltzmann equation.
3. lonization equilibrium given by Saha equation.

Let’s discuss them.




Maxwellian velocity distribution

Gas pressure is produced by the motions of the gas
particles. The velocities of particles are distributed
in a Maxwellian distribution (also called

the Maxwell-Boltzmann distribution).

1N 2\ [ m 2 )
¢ (”)z() ( ) 2e—mv2KT 4y,

N T ﬁ

total

Because the particles produce Doppler shifts, the line-of-sight velocities
have a distribution that is an important special case for spectroscopy:

3/2
dN(v m o\ )

N 2wkT R

total

where v, is the radial (line of sight) velocity component.



Maxwellian velocity distribution

The maximum of the
speed distribution
occurs at v, (the most

probable velocity):
2kT\"?
v, =|——
: ( m >
2
©
The average velocity,
v, 18
1/2
8 kT
v, = (‘) =1.128,
T m
The root mean square
locit '
velocity, v, is (SkT
U?. —
- m

max

T

Maxwell-Boltzmann
speed distribution

T=20000 K

172
) =1.225,




Boltzmann equation

1

For excited levels u and [ of e.g. atomic hydrogen, the Bolzmann equation
relates their population (occupation) numbers as follows:

Nu _ Gu 5,5 ur
N, g

where y ,=E -E, is the energy difference between the levels, g, & g, are their
statistical weights (see next slide), k=8.6174x10 eV /K is the Boltzmann constant.



Boltzmann equation may also be written as:

N, g, 5040

= lo — V ®@=5040/T

log—

In the “ground state”

(n=1), “first excited 23 2p 2D 2F

state” (n=2), and all N shell e — 2 a -
other excited statesof |, | __ o o

H more than one =3
quantum state may A X

have the same energy. L shell o
The number of these

for orbital n is the

statistical weight,g, ~ shell | _~ . =1
(also known as the 1=0 =1 =2 /=3

degeneracy).




Hydrogen

For H, orbital n has a statistical weight

of g,=2n? - the various permutations for
n=1 and n=2 are listed here, with statistical Ground States sy Energy E4
weights g,=2 and g,=8, respectively. n £ my Mg (eV)
1 0 0 +1/2 -13.6
[=0...n-1 azimuthal quantum number 1 0 0 ~1/2 _13.6
m;/=magnetic quantum number with -/sm, < | First Excited States sy | Energy Es
m~=electron “spin” angular momentum +1/2 n 4 my o (eV)
2 0 0 +1/2 ~3.40
2 0 0 —1/2 -3.40
Transition energy between levels v and I: 2 L1 +1/2 —3.40
1 1 2 1 1 -1/2 -3.40
Xu = C (_ — _> 2 1 0 +1/2 -3.40
u? 12 2 1 0 —1/2 —3.40
where C=y,,.=-13.6 eV 21 -1 +1/2 —3.40
2 1 -1 -1/2 -3.40




Balmer lines

An exceptionally high T is required for a significant number of H atoms to have
electrons in their 15t excited states. The Balmer lines (involving an upward transition

from n=2 orbital) reach a peak strength at spectral class A (x10000K)

Fel Sill
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Til Fel
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1 1 1 1 | | 1 1 1 1 1 | I 1 L | | |

4000 5000 6000 7000
Wavelength (angstroms)

| 1 1 1 1 1 1 ] 1

so why do the Balmer lines diminish in strength at higher temperatures?
We need Saha equation to answer this question.




Balmer lines
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The degree of ionization of an atom

bound-bound bound-free free-free

/ Va hv = ymv3—im
ymv? Vi | . . . .« .
A K’I’/ ‘ £ ; < { 1onization limit
hv=x3—x2 "
n=2
Excitati 2
xcitation 3 '
energy 3 hv = x, hv = xon +ymv?
3
2
o J

The degree of ionization of any atom or ion can be obtained from the Saha equation, which can
be derived from the Boltzmann formula if we extend it to states with positive energies, i.e.,
to free electrons with the appropriate statistical weights

(the upper state is now an ion plus free electron, with energy y,,.+1/2m_v?).

The statistical weight of the ion in the ground state plus electron is the product of the statistical
weight of the ion g, " and the statistical weight of the electrong.:  gi;nie =917 e




The Saha Equation

The statistical weight of the ion in the ground state plus electron is the product of the
statistical weight of the ion g,* and the statistical weight of the electron g.:

gion+e = g1+ ge

The (differential) statistical weight of the electron, g, i.e. the number of available
states in interval (v,v+dv) is (from quantum mechanics)

1 8mmdv*dv
ge - Ne h3

The 1/N, factor comes from the space volume element. It is the volume per electron.

Inserting this into Boltzmann’s equation, we arrive at the Saha equation:

Ni 297 (2mm kT)3/?
Ny Negy R

e —Xion/KT

This relates the ground state populations of the atom and ion.




The Saha Equation

The Saha equation (Meghnad Saha 1920):

| _Xion/kTi
Ny Ne g1 h3 ’ |

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o

To derive the ratio of the total number of ions (N*) to the total number of
atoms (NY) we can use the conventional Boltzmann formula for each level n
of the atom and ion, N,/N, and N_*/N,"i.e.




Partition function (1)

If NV is the sum of all neutral particles in their different quantum states:

N® =Ny +2N0 Ny +_zg e ~xn/KT

n=2

We find:

=—<gl+zg : Xn/”)-— u(T)

where we have introduced u?, the partition function of the atom. This is the
weighted sum of the number of ways it can arrange its electrons with the
same energy - e.g. all H is in the ground state for the Solar case, so u°~2

(the ground state statistical weight). Similarly for the ion,

+

N
N* =Ny +g—1+u+<T) ut(T) =g + Z g e xn/kT
1
n=2

For H*, u*=1, since no electrons left.




Partition function (2)

If we multiply N,*/N,° from earlier by N*/N,* and N,°/N" we again obtain
the Saha equation:

+ + 3/2 +
N Ne — 2u” (2mmekT) e ~Xion/kT — 4 83 x 1015u—OT3/23_Xi0n/kT

NO u0 h3 u

In logarithmic form Saha equation can be written as:

N7 u”* 5
logm = logﬁ + log2 + ElogT — Xion® — log P, — 0.48

where 7y, is measured in eV, ®=5040/T and the electron pressure P, is related
to the electron density via the ideal gas law (P,=N kT). In stellar atmospheres,
P,lies in the range 1 dyn/cm? (cool stars) to 1000 dyn/cm? (hot stars).

High temperature favours ionization, high pressure favours recombination.

Note that 1dyn/cm?=0.1N/m? (SI units), so for SI calculations the final constant is -1.48 instead of -0.48




Partition functions (Gray App D2)

Table D.2. Partition functions, log u(T).

’ ®@=5040/T

02 04 06 08 1.0 1.2 1.4 1.6 1.8 20 logg,

H 0.368 0.303 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301
He 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
He* 0301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301
Li — 0.987 0.488 0.359 0.320 0.308 0.304 0.302 0.302 0.302 0.301
- 0.328 0.087 0.025 0.007 0.002 0.001 0.000 0.000 0.000 0.000
Be®  0.541 0.334 0.307 0.302 0.301 0.301 0.301 0.301 0.301 0.301 0.301
B 1.191 0.831 0.786 0.778 0.777 0.777 0.777 0.777 0.777 0.776 0.778
B* 0.435 0.051 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C 1.163 1.037 0.994 00975 0.964 0.958 0.954 0.951 0.950 0948 0.954
cr 0.853 0.782 0.775 0.774 0.773 0.772 0.771 0.770 0.769 0.767 0.778
C** 0.143 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 1.060 0.729 0.645 0.616 0.606 0.603 0.602 0.602 0.602 0.602 0.602
N* 1.073 0.993 0.965 0.953 0.946 0.942 0.939 0.937 0.934 0932 0.954
0] 1.095 0.991 0.964 00953 0.947 0944 0941 0.939 0937 0935 0.954
(00 0.895 0.655 0.614 0.604 0.602 0.602 0.602 0.602 0.602 0.602 0.602
F 0.788 0.772 0.768 0.765 0.762 0.759 0.756 0.753 0.750 0.747 0.778
F* 1.034 0.968 0.949 0.940 0.935 0.930 0.926 0.923 0919 0915 0.954
Ne 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ne* 0.771 0.766 0.760 0.754 0.748 0.743 0.737 0.732 0.727 0.723 0.778
Na 4316 1.043 0.493 0.357 0.320 0.309 0.307 0.306 0.306 0.306 0.301
Na*  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mg  2.839 0478 0.110 0.027 0.007 0.002 0.001 0.001 0.001 0.000 0.000




Partition functions (Gray, old edition)

logu (T) = ¢y + ¢, 10g0 + ¢, log? ® + c31log® © + ¢, log* ©

_ ©®=5040/T

Element [N ¢ ¢y (efs (3

H 1 0.30103  —0.00001 P 15 0.64618  —0.31132 0.68633  —0.47505

He 2 0.00000 0.00000 P+ 0.93588  —0.18848 0.08921  —0.22447

He* 0.30103 0.00000 S 16 095254  —0.15166 0.02340

Li 3 0.31804 —0.206 16 0.91456 —1.66121 1.04195 g+ 0.61971 —0.17465 0.48283 —0.39157

Be 4 0.00801 —0.17135 0.62921 —0.58945 Cl 17 0.744 65 —0.07389 —0.06965

Be* 0.30389  —0.00819 cr 0.92728  —0.15913  —0.01983

B 5 0.78028  —0.01622 K 19 034419  —0.48157 1.92563  —3.17826 1.83211
B* 0.00349  —0.01035 Ca 20 0.07460  —0.75759 2.58494  —3.53170 1.65240
C 6 0.96752  —0.09452 0.08055 Ca* 0.34383  —0.41472 1.01550 0.31930

@t 0.77239  —0.02540 Sc 21 1.08209  —0.77814 1.78504  —1.39179

N 7 0.60683  —0.08674 0.30565  —0.28114 Sct 135894  —0.51812 0.15634

N* 0.94968  —0.06463  —0.01291 Ti 22 147343  —0.97220 147986  —0.93275

0 8 0.05033  —0.05703 Ti* 1.74561  —0.51230 0.27621

o+ 0.60405  —0.03025 0.04525 \Y% 23 1.68359  —0.82055 092361  —0.78342

F 9 0.76284  —0.03582  —0.05619 v+ 1.64112  —0.74045 0.49148

Ne 10 0.00000 0.00000 Cr 24 102332  —1.02540 202181 —1.32723

Ne* 0.74847  —0.06562 —0.07088 Crt 0.85381  —0.71166 2.18621  —0.97590  —2.72893
Na 11 0.30955  —0.17778 1.10594  —2.42847 1.70721 Mn 25 0.80810  —0.39108 1.74756  —3.13517 1.93514
Mg 12 0.00556  —0.12840 0.81506  —1.79635 1.26292 Mn* 0.88861  —0.36398 1.39674 —1.86424  —2.32389
Mg* 0.30257  —0.00451 Fe 26 1.44701  —0.67040 1.01267 —0.81428

Al 13 0.76786  —0.05207 0.14713  —0.21376 Fe* 1.63506  —0.47118 0.57918  —0.12293

Al* 0.00334  —0.00995 Co 27 1.52929  —0.71430 0.37210  —=0.23278

Si 14 097896  —0.19208 0.04753 Ni 28 149063 " —0.33662 0.08553  —0.19277

Sj+ 0.75647 —0.05490 —0.10126 Nit+ 1.03800 —0.69572 0.53893 0.28861




Ionization Potentials

Stage of ionization
Atom I I I v A VI VI VIII IX X XI X1 Xm X1V

H 13.59844
He —24358741 54.41778

Li 539172 75.64018  122.454

Be 9.32263 1821116 153.897 217.713

B 829803 25.15484  37.931 259366 340.22

C 11.26030 24.38332  47.888 64.492 392.08 489.98

N 1453414  29.6013 47449 77472 97.89 55206 667.03

(0] 13.61806 35.11730 54936 77413 11390 138.12 73929 871.41

F 17.42282 3497082  62.708 87.140 11424 157.17 185.19 95391 1103.1

10 Ne 21.56454 40.96328 63.45 97.12 126.21 157.93 207.28 239.10 11958 13622

11  Na 5.13908 47.2864 71.620  98.91 13840 172.18 208.50 264.25 299.9 1465.1 1648.7

12 Mg  7.64624 15.03528 80.144  109.265 14127 186.76 225.02 265.96 328.1 367.5 1761.8 1963

13 Al 5.98577 18.82856  28.448 119.99 153.83 19049 241.76 284.66 330.1 398.8 4420 2086 2304

14 Si 8.15169  16.34585 33493  45.142 166.77 205.27 24649 303.54 351.1 401.4 476.4 523 2438 2673
I5SECP 1048669  19.7694 30203  51.444  65.03 22042 263.57 309.60 372.1 424.4 479.5 561 612 2817
16 S 10.36001  23.3379 34.79 47.222 7259  88.05 280.95 328.75 379.6 447.5 504.8 564 652 707

VoW AW —

17 Cl 1296764 23814 3961 53465 678  97.03 11420 34828 400 4556 5293 592 657 750
18 Ar 1575962 27.62967 4074 5981 7502 9101 12432 14346 4225 4787 5390 618 686 756
19 K 434066 3163 45806 6091 8266 994 11756 15488 1758  S03.8 5647 629 715 787
20 Ca m 1187172 50913 6727 8450 10878 1272 14724 1885 2113 5919 657 727  8I8
21 Sc 7 1279967 24757 73489 9165 11168 1380 1581 1800 2252 2498 688 757 831

22 Ti 6.8282 13.5755 27492 43267 9930 119.53 1408 170.4 192.1 215.9 265.1 292 788 863
23 V. 6.7463 14.66 29.311 46.71 65.28 128.1 150.6 173.4 205.8 230.5 255.1 308 336 896
24 Cr 6.76664 16.4857 30.96 49.16 69.46  90.64 161.18 184.7 209.3 2444 270.7 298 355 384
25 Mn 743402 15.63999 33.668  51.2 724 95.6 11920 1945 221.8 2483 286.0 314 344 404
2615 Fe 7.9024 16.1878 30.652  54.8 75.0 99.1 12498 151.06 233.6 262.1 290.2 331 361 392

27 Co 7.8810 17.083 33.50 513 79.5 103 131 160 186.2 276.2 305 336 379 411
28 Ni 7.6398 18.168 84 35.19 54.9 75.5 108 134 164 193 224.6 321 352 384 430
29 Cu 7.72638  20.29240  36.841 55.2 79.9 103 139 167 199 232 266 369 401 435
30 Zn 9.39405 17.96440  39.723 594 82.6 108 136 175 203 238 274 311 412 454
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We can use the Saha equation to study the degree of ionization of H in general in
stellar photospheres. The fraction of ionized hydrogen to the total is defined below.
We find that H switches from mostly neutral below 7000K to mostly ionized above
11000K for typical N,. This allows us to understand why hydrogen lines are
strongest in A-type stars, with temperatures of 7500-10000K.

Degree of ionization of H in stars

H*  H*  HY/H°

H H°+H* 14 H*/HO
+

N7N, — 2.4 x 1015 T3/2,—158000/T
NO '

Using 1eV per particle, the hydrogen is
heated from 0 to 10* K. Supplying 13.6 eV
more, the temperature increases only up to
2x10* K. Ionization is an extremely energy
consuming process. lonization happens
within a very small temperature interval.




Degree of ionization in stars

Hydrogen:
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1
0.8
0.6
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Iron:

As temperature increases, ionization
occurs rather abruptly. In a stellar
photosphere, elements exist mainly in
just two ionization stages.
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Strong Balmer lines in A stars — why?

From today’s first example, a very high 9

T was required to populate level n=2 8| 1
of H relative to the ground state. We 7+ .
can now use the Boltzmann & Saha ot )

equations to measure H(n=2)/H(total)
as a function of T. For increasing T, the
n=2 population increases due to the
Boltzmann equation, reaching a
maximum value around 10,000K

NNy (1078)

(}- . | . 1 s I

(equivalent to A spectral type) and 5000 10,000 Tm;ﬂ:ﬂﬂ o 25

then reduces as H becomes mostly

ionized. This is why A stars have Note: He in stellar atmospheres complicates

strong Balmer lines. this calculation since ionized He provides
excess electrons with which H ions can

recombine, so it takes higher temperatures
to achieve the same degree of ionization.




A Element W(A) Name A Element W(/o\) Name

3581.21 Fe I 2.14 N 4920.51 Fe Il 0.43

371995 Fel 1.66 4957.61 Fel 0.45

373487 Fel 3.03 M 5167.33 Mgl 0.65 b,

3749.50 Fe I 1.91 5172.70 Mg I 1.26 b,

3758.24 Fel 1.65 5183.62 Mg I 1.58 b,

3770.63 H,, 1.86 5232.95 Fel 0.35

3797.90 H,, 3.46 5269.55 Fel 0.41

3820.44 Fe I 171 L 5324.19 Fel 0.32

3825.89 Fel 1.52 5238.05 Fel 0.38

3832.31 Mg 1 1.68 5528.42 Mgl 0.29

3835.39 H, 2.36 5889.97 Nal 0.63 D,

3838.30 Mgl 1.92 5895.94 Na l 0.56 D,

3859.92 Fe l 1.55 6122.23 Cal .22

3889.05 H, 2 35 6162.18 Cal 0.22

393368 Call  2025| K 6562.81 H, 4.02 C |

3968.49 Call 15.47 H 6867.19 0, tell B
. S : 7593.70 O, tell A

4101.75 H; 3.13 h 8194.84 Na I 0.30

4226.74 Cal 1.48 g 8498.06 Call 1.46

4310+10 — — G 8542.14 Call 3.67

4340.48 Hy 2.86 8662.17 Call 2.60

4383.56 Fel 1.01 8688.64 Fel 0.27

4861.34 H, 3.68 8736.04 Mg I 0.29

4891.50 Fe I 0.31




Ca Il in the Sun

The photosphere of the Sun has only two calcium atoms for every million
H atoms, yet the Ca II H and K lines (produced by the ground state of

singly ionized calcium, Ca*) are stronger than the Balmer lines of H
(produced by the 15t excited state of neutral H). Why?

High
c Hydrogen lonized
calcium
lonized
< helium
o
o
= lonized
»
()
£ Helium
-1
Low | | 1 | | 1
10,000 6000 4000
©2001 Brooks/Cole Publishing/ITP Tem pel"atu re ( K)




Saha-Boltzmann applied to Ca

From the Saha equation we can find that H is essentially neutral in the Solar photosphere:

P,=200 dyn/cm?, x,,,=13.6 eV, ®=5040/(T_s,,,)=0.872, the partition function u’=2, u*=1 (i.e. log u*=0)
N 5
logm =logu® —logu® +log2 + ElogT — Xion® —logP, — 0.48 = —5.235 - N*/N° = 0.0006%

M — Joge - 2202y 1(eV): H(n=2)/H(n=1)=5x10"

yet from the Boltzmann formula log ~ 5 =
l l

i.e. very little H is available to produce Balmer absorption lines.

For Ca, y,,,=6.1 eV, and partition functions may be determined from tables (Slide 104) via
logu (T) = ¢y + ¢, 10g0® + ¢, log? © + c3log3 @ + ¢, log* ®

For ®=5040/T=0.872, the partition function of neutral Ca
logu® (T) = 0.075 — 0.757 log® + 2.581l0og? ® + 3.5310og3 0 — 1.651log* ©

i.e. u’=1.3. Similarly, u*=2.3.

Cat 2.3 o
log - = log 7 +log2 +9.40 — 5.34 — 1.18 — 0.48 = +2.95 - Ca*/Ca® ~ 900

Essentially all Calcium is singly ionized.




Saha-Boltzmann applied to Ca

Essentially all Calcium is singly ionized.

N(Ca*) in the first excited state relative to
the ground state (g,=2, g,=4, x=3.12eV) is

1/265 from Boltzmann eqgn, so nearly all =
Calcium in the Sun’s photosphere is in the 0.60
ground state of Ca™. -

0.20

Combining these results:
N(Ca*g,)/N(H,-,)= N(Ca*,,)/N(Ca) x N(Ca)/N(H) x N(H)/N(H,_,)=400

There are 400 times more Ca* ions with electrons in the ground-state (which
produce the Ca Il H&K lines) than there are neutral H atoms in the first excited state
(which produce Balmer lines).

The Ca Il lines in the Sun are so strong due to T dependence of excitation and
ionization (not high Ca/H abundance).

112




Another observational effect that can be understood using the Saha
equation is that supergiants and giants have lower temperatures
than dwarfs of the same spectral type.

Spectral classes are defined by line ratios of different ions, e.g.

He 11 4542A / He 1 4471 for O stars. At higher temperatures the
fraction of He II will increase relative to He I, so the above ratio will
increase.

However, supergiants have lower surface gravities (or pressure)
than main-sequence stars, so from Saha equation a lower P, at the
same temperature will give a higher ion fraction, N*/N ©

Assuming a given spectral class corresponds to a fixed ratio N*/N 9,
a star with a lower pressure can have a lower T, for the same ratio
and spectral class



Summary

LTE = Maxwell + Boltzmann + Saha.

Boltzmann equation describes degree of excitation of an atom or
ion,e.g. N (H,_,)/N (H,_,).

Saha equation describes degree of ionization of successive ions, e.g.
N (He*)/N(He") or N (He?*)/N (He").

The Partition function is the weighted sum of the number of ways
an atom or ion can arrange its electrons with the same energy.

Ionization is an extremely energy consuming process. lonization
happens within a very small temperature interval.

Saha-Boltzmann explains the spectral type (or temperature)
dependence of lines in stellar atmospheres, e.g. Strongest Balmer
series at spectral type A and strong Call lines in Solar-type stars.
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