
Linear vs Quadratic source function
46

Up to now we assumed a linear source function. More generally, if:

Then

We still get S(0) at the limb, but a more complicated result at the centre. 
For example, a quadratic term requires the solution of 

At  = 90, =0, whilst at  =0, 1+2a1/a2 providing a2<< a1. 

The ratio of the limb-to-centre intensity is 

     

𝑆𝜆(𝜏𝜆) = 

𝑛=0

𝑎𝑛𝜆 𝜏𝜆
𝑛

𝐼𝜆(0, 𝜃) = 

𝑛=0

𝐴𝑛 cos𝑛 𝜃 𝐴𝑛 = 𝑎𝑛𝜆 න
0

∞

𝑢𝑛 𝑒−𝑢𝑑𝑢 = 𝑎𝑛𝜆𝑛

𝑆(𝜏𝜆) = 𝑎0𝜆 + 𝑎1𝜆𝜏𝜆 + 𝑎2𝜆𝜏𝜆
2

𝐼𝜆(0, 𝜃) = 𝑎0𝜆 + 𝑎1𝜆 cos 𝜃 + 2𝑎2𝜆 cos2 𝜃

𝑰𝝀(𝟎, 𝟗𝟎)/𝑰𝝀(𝟎, 𝟎) = 𝒂𝟎𝝀/(𝒂𝟎𝝀 + 𝒂𝟏𝝀 + 𝟐𝒂𝟐𝝀)



𝐼𝜆(0, 𝜃)/𝐼𝜆(0,0) = 𝑎0𝜆 + 𝑎1𝜆 cos 𝜃 + 2𝑎2𝜆 cos2 𝜃

The measured centre to limb variation of the solar intensity is

(m) a0 a1 2a2

0.3 0.06 0.74 0.20

0.4 0.14 0.91 -0.05

0.6 0.35 0.88 -0.23

0.8 0.49 0.73 -0.22

1.5 0.56 0.64 -0.20

2.0 0.70 0.48 -0.18
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Example for Solar Case:
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(Table 4.17, AQ 4th edition)



Limb darkening is observed to be 
greatest at shorter wavelengths in the 
Sun. The temperature distribution of 
the upper atmosphere of the Sun can 
be obtained from limb darkening 
measurements, carried out via e.g. 
multi-filter images of the Solar 
continuum (between the lines). 

Until recently, the Sun was the only 
star for which limb darkening was 
observed, since one needs to spatially 
resolve the disc (most other stars 
appear as point sources!) to measure 
limb darkening. 

Other methods are now possible.

(Pierce & Waddell 1961).

Centre Limb
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Wavelength dependence



1. Direct interferometry, via high spatial resolution “imaging” – e.g. 
ESO/VLT interferometry or COAST array, providing a star is very large 
and nearby (a cool supergiant).

2. The light curve due to the gravitational micro-lensing of a background 
(generally Galactic bulge or Magellanic Cloud) star by a foreground 
source (e.g. PLANET team).

3. The light curve from an eclipsing binary system during secondary 
eclipse allows us to study limb darkening of the primary, although non-
trivial! Similar approach followed by extra solar planets occulting 
parent star (e.g. HD209458).
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Limb darkening for other stars



COAST (Cambridge Optical Aperture Synthesis Telescope) spatial resolution 
of 20-30 milli-arcsec) has made limb darkening observations of 
M supergiant Betelgeuse at different wavelengths (using filters).

7000A 9050A 12900A

0.1 arcsec
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Limb darkening from interferometry



ESO's Very Large Telescope 
Interferometer (VLTI) is possible 
to achieve a resolution of 0.001 
arcsec or even less. It has resolved 
the disc of the cepheid L Carinae.
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Limb darkening from interferometry



 Galactic gravitational micro-
lensing occurs when a foreground 
object (lens) passes in front of a 
background star (source). The 
gravitational deflection of light by 
the lens causes the flux from the 
source to be amplified. 

 Microlensing surveys (e.g. 
PLANET, MACHO) have identified 
hundreds of such events towards 
the Galactic bulge and Magellanic 
Clouds.

 One such event, MACHO 97-BLG-
28 was studied to reveal limb 
darkening information for the 
background K giant (Albrow et al. 
1999).
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Limb darkening from microlensing
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Thick lines show how much fainter the 
K giant becomes at its edges in the red 
I (left) and blue-green V filter (right). 
If the star emitted a uniform amount 
of light across its whole stellar disk, 
the profile would look like the straight 
solid black line instead



 HD209458 is the first system in 
which extra-solar planet (P=3.5d, 
0.6MJ) has been observed to 
transit its (F8V) primary, allowing 
determination of limb darkening 
(Brown et al. 2001).

 More generally eclipsing binaries 
are problematic due to degeneracy 
with other parameters (Grygar et 
al. 1972). Accurate light curves 
needed for linear limb darkening 
parameters.
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Limb darkening from eclipsing systems
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 Stars appear darker at their limbs than at 
their disk centers because at the limb we are 
viewing the higher and cooler layers of stellar 
photospheres. 

 Limb darkening derived from state-of-the-art 
stellar atmosphere models systematically fails 
to reproduce recent transiting exoplanet light 
curves from the Kepler, TESS, and JWST 
telescopes – stellar brightness obtained from 
measurements drops less steeply towards the 
limb than predicted by models.

 Possible explanation: magnetic fields on the 
stellar surface are not taken into account:

Kostogryz et al. (2024, NatAst): 
stellar atmosphere models computed with the 
use of a 3D radiative magneto-hydrodynamic 
code show that small-scale concentration of 
magnetic fields on the stellar surface affect 
limb darkening at a level allowing the authors 
to explain the observations.
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Limb darkening: current state
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F O R M A L  S O L U T I O N  T O  T H E  P L A N E - P A R A L L E L  
T R A N S F E R  E Q U A T I O N .

E D D I N G T O N - B A R B I E R  R E L A T I O N .

G R E Y  A T M O S P H E R E .

Eddington-Barbier relation
55



The plane-parallel transfer equation 
(for stars with thin photospheres) 

The integrated form of the RTE is 
[See D. Gray (page 127-129, 131) for more detail]:

Here, the integration limit c ( which complicates the integral ), replaces  𝐼(0) in 
the parallel-ray transfer equation (Lecture 5, slide 148):

This is because the boundary conditions are different for radiation going in (θ>90°) and coming out (θ<90°) →

𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

Formal Solution to RTE (1)
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𝐼𝜆 𝜏𝜆 = 0

𝜏𝜆 𝑆𝜆 𝑡𝜆 𝑒− 𝜏𝜆−𝑡𝜆 𝑑𝑡𝜆 +𝐼𝜆0𝑒−𝜏𝜆

𝐼𝜆 𝜏𝜆 = − න
𝑐

𝜏𝜆

𝑆𝜆 𝑡𝜆 𝑒−(𝑡𝜆−𝜏𝜆) sec 𝜃 sec 𝜃 𝑑𝑡𝜆



 The full intensity at the position   on the line of sight through the photosphere is

 An important special case occurs at the stellar surface. In this case

where we assumed that the external radiation is completely negligible compared to the 
star’s own radiation. This Equation is the expression we need to compute the spectrum.

 However, since the discs of most stars are spatially unresolved, we must deal with 
flux rather than intensity, so we will not deal with this equation any further.

Formal Solution to RTE (2)
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=0 outer 
boundary

=max inner 
boundary

−

I

+

I



Emergent Flux
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𝐹 = 2𝜋 න

−1

1

𝐼(𝜇) 𝜇 d𝜇

Decomposition into two half-spaces:

𝐹 = 2𝜋 න
0

1

𝐼 𝜇 𝜇 d𝜇 + 2𝜋 න
−1

0

𝐼(𝜇) 𝜇 d𝜇

= 2𝜋 න
0

1

𝐼(𝜇) 𝜇 d𝜇 − 2𝜋 න
0

1

𝐼 −𝜇 𝜇 d𝜇 =  𝑭+ − 𝑭−

=cos 

Netto = Outwards – Inwards.

From our lecture 6 (slide 160), the flux is [If there is no azimuthal ( ) dependence in I ]:



Eddington-Barbier relation

Special case: at the surface of a star F − = 0, so that F = F + 

From earlier, assuming a linear source function               yields 

𝐼𝜆(0, 𝜃) = 𝑎𝜆 + 𝑏𝜆 𝑐𝑜𝑠 𝜃 = 𝑎𝜆 + 𝑏𝜆𝜇

In this case we obtain the ”Eddington-Barbier” relation:

𝐹𝜆(0) = 𝜋(𝑎𝜆 + Τ2 3 𝑏𝜆) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3)

The emergent flux from the stellar surface is  times 
the Source function at an optical depth of 2/3

𝑆𝜆(𝜏𝜆) = 𝑎𝜆 + 𝑏𝜆𝜏𝜆

𝐹𝜆 0 = 2𝜋 න
0

1

𝐼𝜆 0, 𝜃  𝜇 𝑑𝜇
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If we assume Local TE (LTE), then

Let us assume the opacity is independent of , i.e. =. We call such a (hypothetical) 
atmosphere a grey atmosphere. Then

The energy distribution of F is that of a blackbody corresponding to the temperature at 
the optical depth  =2/3. 

The black body intensity is defined (following discovery by Max Planck in 1900) as either

                                                                               or

where c=2.99x1010 cm, h=6.57x20-27 erg s, k=1.38x10-16 erg/s. 

Let’s compute the Bolometric flux.

Grey atmosphere (1)

𝐹𝜆(0) = 𝜋𝐵𝜆[𝑇(𝜏 = 2/3)]

𝐹𝜆(0) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3) = 𝜋𝐵𝜆[𝑇(𝜏𝜆 = 2/3)]
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𝐵𝜆(𝑇) =
2ℎ𝑐2

𝜆5

1

𝑒ℎ𝑐/𝜆𝑘𝑇 − 1
𝐵𝜈(𝑇) =

2ℎ𝜈3

𝑐2

1

𝑒ℎ𝜈/𝑘𝑇 − 1



Bolometric flux of Black Body

𝐵𝜈(𝑇) =
2ℎ𝜈3

𝑐2

1

𝑒ℎ𝜈/𝑘𝑇 − 1
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𝐹 = 𝜎𝑇4



If we assume Local TE (LTE), then

Let us assume the opacity is independent of , i.e. =. We call such a (hypothetical) 
atmosphere a grey atmosphere. Then

The energy distribution of F is that of a blackbody corresponding to the temperature at 
the optical depth  =2/3. 

Thus, integrating over 

𝐹(0) = න
0

∞

𝐹𝜆 (0)𝑑𝜆 = 𝜋 න
0

∞

𝐵𝜆 𝑇(𝜏 = 2/3) 𝑑𝜆 = 𝜎𝑇4(𝜏 = 2/3)

From Stefan-Boltzmann, F (0)=Teff
4, by definition, we find Teff =T ( =2/3). 

The “surface” of a star, which has temperature Teff  (by definition) is not at the very top 
of the atmosphere (where  =0), but lies deeper down, at =2/3. 

This can be considered as an average point of origin from the observed photons.

Grey atmosphere (2)

𝐹𝜆(0) = 𝜋𝐵𝜆[𝑇(𝜏 = 2/3)]

𝐹𝜆(0) = 𝜋𝑆𝜆(𝜏𝜆 = 2/3) = 𝜋𝐵𝜆[𝑇(𝜏𝜆 = 2/3)]
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Summary

 Solution to plane-parallel transfer equation at surface 
explains limb darkening in Sun.

 Limb darkening in other stars can be estimated from 
interferometry, eclipsing binaries, microlensing.

 Eddington-Barbier relation.

 Grey atmosphere.

 Assuming a grey atmosphere , we found that the “surface” of a 
star, which has temperature Teff  (by definition) is not at the 
very top of the atmosphere (where  =0), but lies deeper 
down, at  = 2/3. 
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G R E Y  A T M O S P H E R E

T H E R M A L  ( R A D I A T I V E )  E Q U I L I B R I U M

T H E  D E P T H  D E P E N D E N C E  O F  T H E  S O U R C E  F U N C T I O N

 E D D I N G T O N  A P P R O X I M A T I O N  

T E M P E R A T U R E  S T R U C T U R E  O F  T H E  G R E Y  A T M O S P H E R E

Radiative Equilibrium



Grey atmosphere
65

• Above we assumed that the opacity can be independent of , 
i.e. =. We call such a (hypothetical) grey atmosphere. 

• In the theory of stellar atmospheres, much of the technical 
effort goes into iteration schemes using equations of radiative 
equilibrium (which we will discuss today) to find the source 
function S. 

• Often, a starting point for such iterations is the grey case.



Thermal (radiative) equilibrium

 In stellar atmospheres, radiation dominates transfer of energy, so we can discuss 
(three) conditions of radiative equilibrium, which can be used to derive the 
temperature structure in the photosphere. 

 The radiation we see from the Sun comes from a layer of geometrical height of a 
few hundred km.

 In a column of 100 km height and 1 cm2 cross-section there are 1024 particles 
(since n ~1017/cm3 in Sun), each of which has a thermal energy of 3kT/2 
(10-12 erg). The total thermal energy of this column is therefore 1012 erg/cm2. 
The observed radiative energy loss (per cm2) of the solar surface is 
F


=6.3x1010 erg cm-2 s-1. 

 If the Sun shines at a constant rate, the energy content of the solar photosphere 
can only last for 15 seconds without being replenished from below. 

 Exactly the same amount of energy must be supplied or else the photosphere 
would quickly change temperature. 
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First equation of radiative equilibrium

 Since this does not happen, dF/dt =0 or dF/dx =0 or dF/d =0, i.e. the total flux 
must be constant at all depths of the photosphere (conservation of energy) – 
the 1st equation of radiative equilibrium

𝐹 𝑥 = 𝐹 0 = 𝑐𝑜𝑛𝑠𝑡 = 𝜎𝑇𝑒𝑓𝑓
4

 When all the energy is carried by radiation, we have

𝐹 𝑥 = න
0

∞

𝐹𝜆 𝜏𝜆 𝑑𝜆 = 𝐹(0)

Although the shape of F can be expected to change very significantly with depth, 
its integral remains invariant.

 If other sources of energy transport are significant, then a more general 
expression of flux constancy must be applied:

Φ 𝑥 + න
0

∞

𝐹𝜆 𝜏𝜆 𝑑𝜆 = 𝐹(0)

(x) is, for example, the convective flux
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Radiative equilibrium
68

 We may integrate the plane-parallel transfer equation over solid angle . 

     Based on the definition of mean intensity and flux: 

 Finally, assuming S to be isotropic we obtain,

1

4𝜋

𝑑

𝑑𝜏𝜆
[𝐹𝜆(𝜏𝜆)] = 𝐽𝜆(𝜏𝜆) − 𝑆𝜆(𝜏𝜆)

න cos 𝜃
𝑑𝐼𝜆(𝜏𝜆, 𝜃)

𝑑𝜏𝜆
𝑑𝜔 = න𝐼𝜆(𝜏𝜆, 𝜃) 𝑑𝜔 − න𝑆𝜆(𝜏𝜆) 𝑑𝜔

𝑑

𝑑𝜏𝜆
[𝐹𝜆 𝜏𝜆 ] = 4𝜋[𝐽𝜆 𝜏𝜆 ] − න𝑆𝜆(𝜏𝜆) 𝑑𝜔

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔  and 𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔



Second equation of radiative equilibrium

69

 In the grey case, for which the opacity   is independent of wavelength

1

4𝜋

𝑑

𝑑𝜏
𝐹(𝜏) = −𝑆(𝜏) + 𝐽(𝜏) = 0

     Since dF/d =0,     the Source function must be equal the mean intensity J.
 If the atmosphere is not grey, which is the situation for most stars, let’s incorporate the 

opacity  into the RHS, and integrating over wavelength

1

4𝜋

𝑑

𝑑𝑠
න

0

∞

𝐹 𝜏𝜆 𝑑𝜆 = න
0

∞

(−𝜅𝜆𝑆𝜆 + 𝜅𝜆𝐽𝜆)𝑑𝜆 = 0

Since dF/ds =0, we get the radiative balance equation (energy conservation)

න
0

∞

𝜅𝜆 𝑆𝜆𝑑𝜆 = න
0

∞

𝜅𝜆 𝐽𝜆𝑑𝜆

 This is the second equation of radiative equilibrium and can be understood as the total energy 
absorbed (RHS) must equal the total energy re-emitted (LHS) if no heating or cooling is 
taking place.

𝜏𝜆 = න
0

𝑆

𝜅𝜆𝜌𝑑𝑠



Third equation of radiative equilibrium
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The third radiative equilibrium condition is obtained by multiplying the transfer 
equation by cos  and integrating over solid angle and then wavelength

ර cos2 𝜃
𝑑𝐼𝜆(𝜏𝜆, 𝜃)

𝑑𝜏𝜆
𝑑𝜔 = ර cos 𝜃 𝑑𝐼𝜆 𝜏𝜆, 𝜃 𝜔 − ර cos 𝜃 𝑆𝜆 𝜏𝜆, 𝜃 𝑑𝜔

cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆

𝐾𝜆(𝜏𝜆) =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔 𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔 0 (S is isotropic)

4𝜋 න
𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 = න𝐹𝜆 𝑑𝜆 = 𝐹(𝜏)

න
0

∞ 𝑑𝐾𝜆

𝑑𝜏𝜆
𝑑𝜆 =

𝐹(𝜏)

4𝜋The third radiative equilibrium condition: 



Equations of radiative equilibrium
71

 All the three radiative equilibrium conditions are not independent. 
S that is a solution of one will be the solution of all three.

 The flux constant F(0) is often expressed in terms of an effective 
temperature 𝐹 0 = 𝜎𝑇𝑒𝑓𝑓

4 .

 When model photospheres are constructed using flux constancy as a 
condition to be fulfilled by the model, the effective temperature becomes 
one of the fundamental parameters characterizing the model.

 In real stars, energy is created or lost from the radiation field through e.g. 
convection, magnetic fields, 
plus in supernovae atmospheres energy conservation is not valid 
(radioactive decay of Ni to Fe), 
so the energy constraints are more complicated in reality.
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