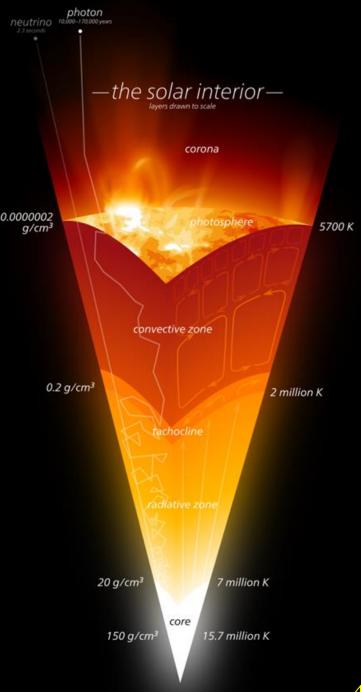

[Theoretical] Astrophysics (765649S)

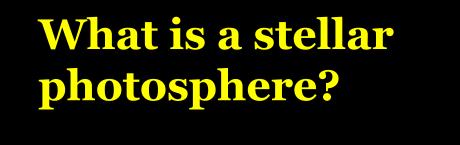
VITALY NEUSTROEV

SPACE PHYSICS AND ASTRONOMY RESEARCH UNIT UNIVERSITY OF OULU

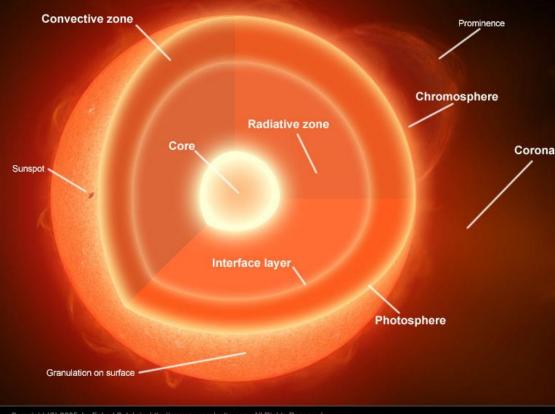
2024

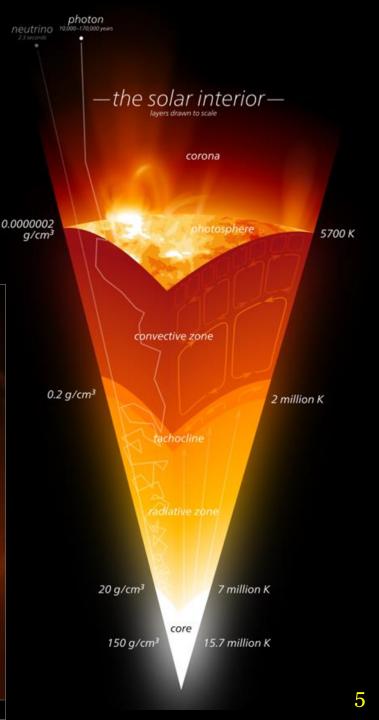
Part 2

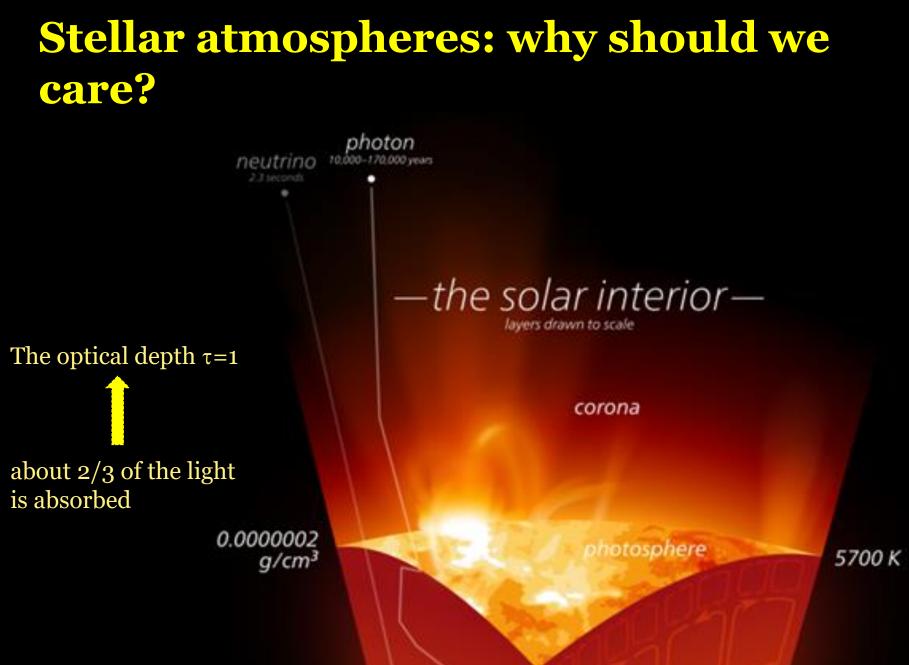

Stellar atmospheres


3

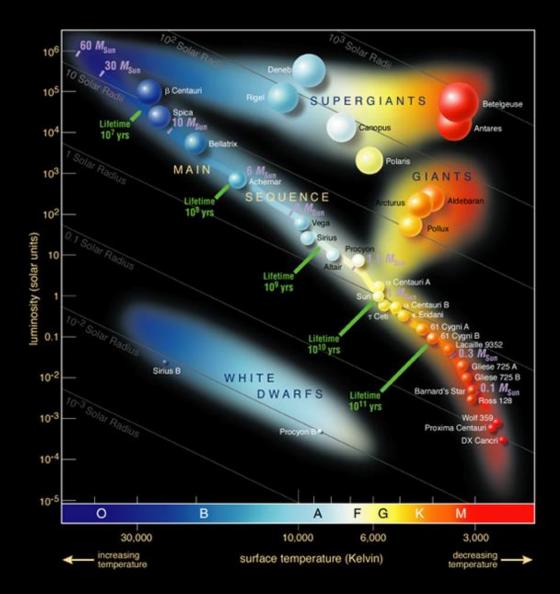
WHAT IS A STELLAR ATMOSPHERE? WHY SHOULD WE CARE ABOUT IT? WHAT CAN WE LEARN FROM OBSERVATIONS?


What is a stellar photosphere?


- Thin, tenuous transition zone between (invisible) stellar interior and (essentially vacuum) exterior.
- The "photosphere" is the visible disc, whilst the "atmosphere" also includes coronae and winds.
- In contrast with the interior, where convection may dominate, the energy transport mechanism of the atmosphere is radiation.
- Stellar atmospheres are primarily characterized by two parameters: $(T_{\text{eff}}, \log g)$.



Thin zone between stellar interior and exterior: $\Delta R_{sun} = a \text{ few} \times 10^7 \text{ cm}, M_{atm} \sim 2 \times 10^{21} \text{ g} = \sim 10^{-12} \text{ M}_{\odot}$

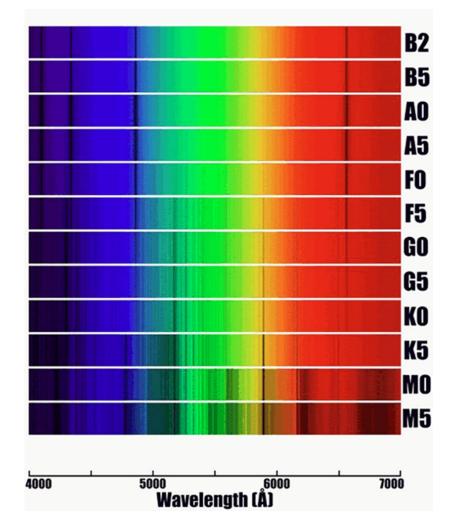


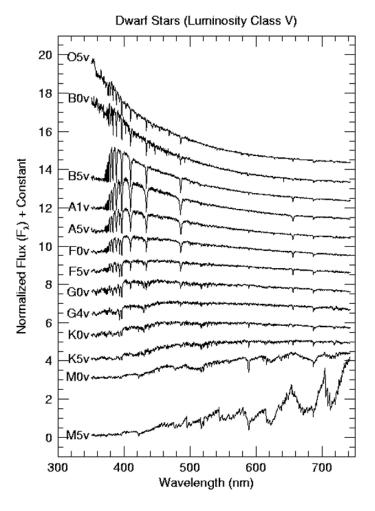
Stellar atmospheres?

7

- Stellar interiors are effectively invisible to external observers (apart for e.g. astroseismology) so **all** the information we receive from stars originates from their atmospheres. In particular, spectral lines also originate in a stellar atmosphere. Understanding how radiation interacts with matter affecting the emergent line and continuous spectrum is at the heart of this course.
- Knowledge of **plasma physics** (e.g. line broadening), **atomic physics** (microscopic interaction between light and matter), **radiative transfer** (macroscopic interaction between light and matter), **thermodynamics** (LTE vs non-LTE), **hydrodynamics** (velocity fields) yields stellar properties, chemical composition, outflow properties.
- Inputs for stellar/galactic evolution and structure.

Recap: what can we learn from observations?


What can we learn from observations? 9 **Please re-read Lecture 1 carefully.** Also, before the next class, re-study Lectures 5 & 6 VERY carefully.

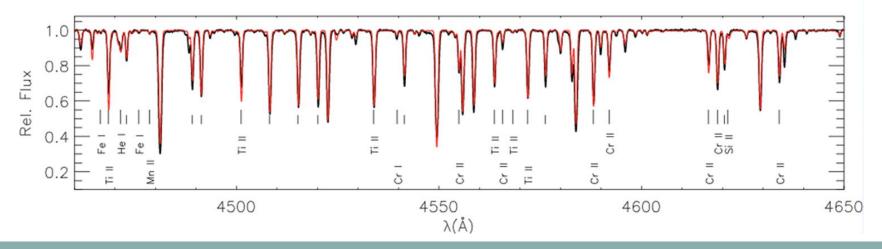

We will be based on that material a lot.

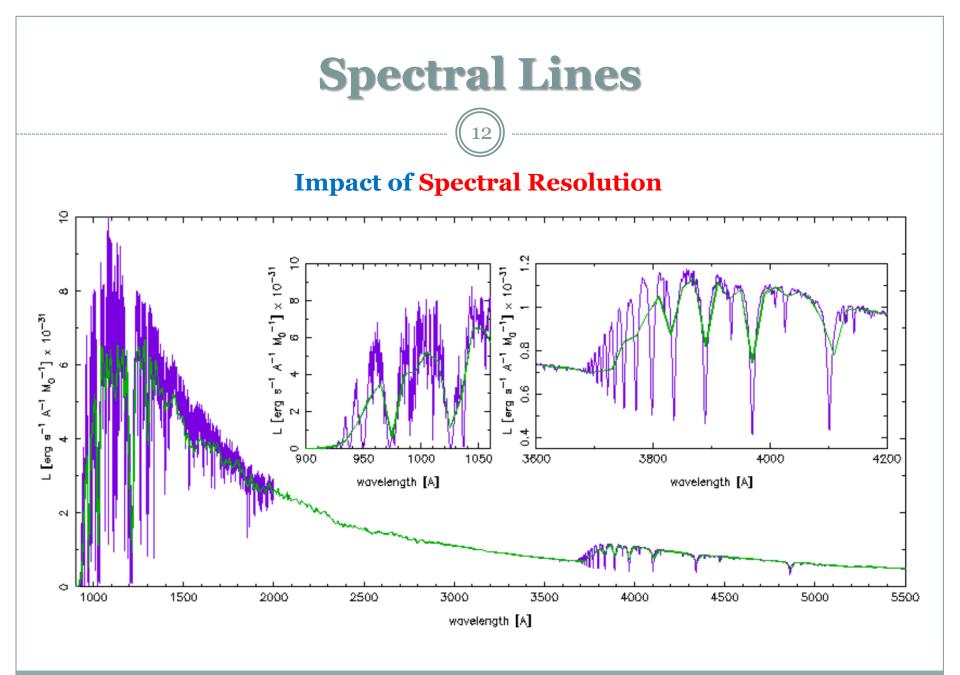
What can we learn from observations?

10

Temperature






What can we learn from observations?

Surface gravity and stellar abundances also come from spectra:

11

Primary star parameters (T_{eff} , log g)

- Primary star parameters are effective temperature T_{eff} and surface gravity $\log g$, + chemical composition (metallicity):
 - Effective temperature (in K) is defined by $L = 4\pi R^2 \sigma T_{eff}^4$

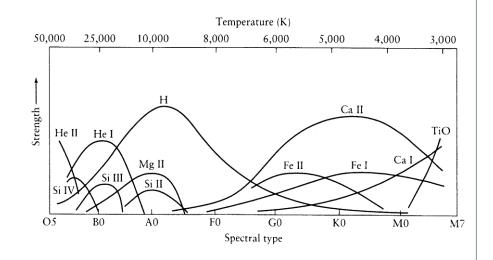
(here L - luminosity, R - stellar radius), related to *ionization*.

• Surface gravity (cm/s²), $g = GM/R^2$, related to *pressure*.

- The Sun has $T_{\text{eff}}=5777$ K, $\log g=4.44$ its atmosphere is only a few hundred km deep, <0.1% of the stellar radius.
- A red giant has log *g*~1 (extended atmosphere), whilst a white dwarf has log *g*~8 (effectively zero atmosphere), and neutron stars have log *g*~14-15

Spectral Types

Morgan-Keenan (M-K) classification scheme orders stars via "OBAFGKM" spectral classes using ratios of line strength.


Only Bad Astronomers Forget Generally Known Mnemonics

```
Oh, Be A Fine Girl/Guy, Kiss Me
```

MK spectral class	Class characteristics	
0	Hot stars with He II absorption	
В	He I absorption; H developing later	
Α	Very strong H, decreasing later; Ca II increasing	
F	Ca II stronger; H weaker; metals developing	
G	Ca II strong; Fe and other metals strong; H weaker	
K	Strong metallic lines; CH and CN bands developing	
М	Very red; TiO bands developing strongly	

O-types have the bluest B-V & highest T_{eff} 's. OBA stars are early-type star, whilst cooler stars are late-type.

Spectral classes are each subdivided into (up to) ten divisions – e.g. O2 .. O9, B0, B1 .. B9, A0, A1 .. etc

Luminosity Class classification

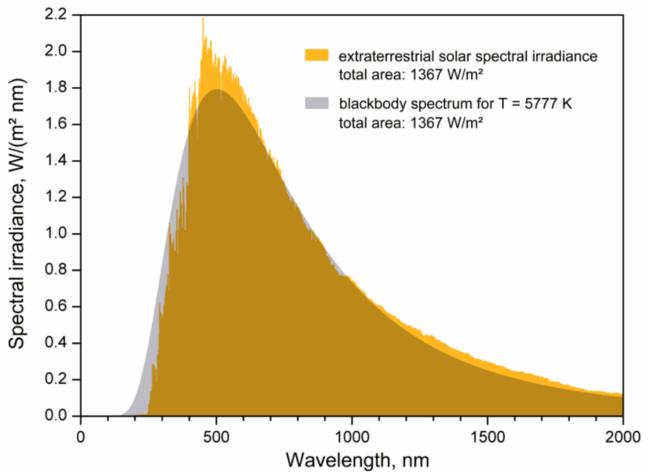
15

 Luminosity class information is often added, based upon spectral line widths:

Ia	Most luminous supergiants
Ib	Less luminous supergiants
Π	Luminous giant
III	Normal giants
IV	Subgiants
V	Main sequence stars (dwarfs)
VI	Subdwarfs
VII	White dwarfs

Dwarfs have high pressures (large line widths) and supergiants have lower pressures (smaller line widths).

Luminosity Classes and Luminosity


16

• Line pairs for spectral classification:

Class	Line pairs for class	Class	Line pairs for luminosity	
05 ⇔ 09	4471 He 1/4541 He II	09 ⇔ B3	4116-21 (Si IV, He I)/4144 He I	
B0 ⇔ B1	4552 Si 111/4089 Si IV	B0 ⇔ B3	3995 N 11/4009 He 11	
B2 ⇔ B8	4128-30 Si 11/4121 He I	B1 ⇔ A5	Balmer line wings	
B8 ⇔ A2	4471 He 1/4481 Mg II 4026 He 1/3934 Ca II	A3 ⇔ F0	4416/4481 Mg II	
A2 ⇔ F5	4030-34 Mn 1/4128-32 4300 CH/4385	F0 ⇔ F8	4172/4226 Ca I	
F2 ⇔ K	4300 (G band)/4340 Hy	F2 ⇔ K5	4045-63 Fe 1/4077 Sr II	
F5 ⇔ G5	4045 Fe 1/4101 H8		4226 Ca 1/4077 Sr II	
	4226 Ca 1/4340 Hy	G5 ⇔ M	Discontinuity near 4215	
G5 ⇔ K0	4144 Fe 1/4101 H8	K3 ⇔ M	4215/4260, Ca I increasing	
K0 ⇔ K5	4226 Ca 1/4325 4290/4300	and of class	a state of the spite which a	

Continuous Energy Distribution

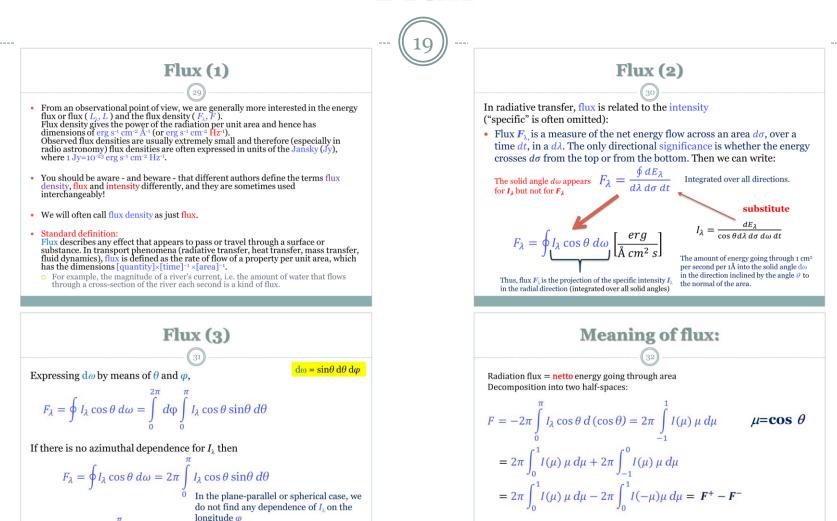
Stars share some properties of black-bodies

Stefan – Boltzmann Law

----- ((18)) --

Blackbody radiation is continuous and isotropic whose intensity varies only with wavelength and temperature.

Following empirical (Josef Stefan in 1879) and theoretical (Ludwig Boltzmann in 1884) studies of black bodies, there is a well-known relation between Flux and Temperature known as <u>Stefan-Boltzmann law</u>:


 $F=\sigma T^4$

with σ =5.6705x10⁻⁵ erg/cm²/s/K⁴

(Note that Bohm-Vitense refers to "astronomical flux", $H=F/\pi$, as "flux").

We will return to "different" types of fluxes later.

Flux

 $F_{\lambda} = -2\pi \left[I_{\lambda} \cos \theta \, d \left(\cos \theta \right) \right]$

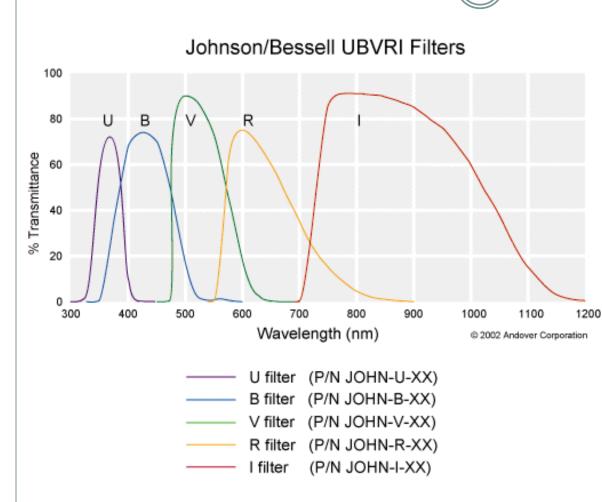
Netto = Outwards - Inwards

Special cases: at the <u>surface</u> of a star $F^- = 0$, so that $F = F^+$ at the <u>centre</u> of a star, isotropic radiation field: F=0

19

Magnitude scale

20

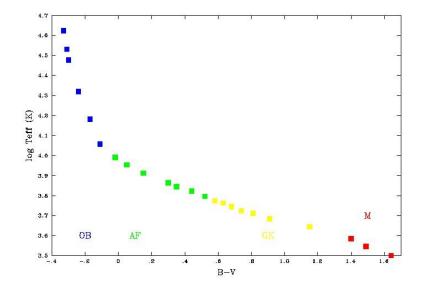

- In practice, we often (historically) measure flux densities *F* (erg cm⁻² s⁻¹) from astronomical objects via a logarithmic magnitude scale (like the eye and most other human senses).
- See the course "Observational Astronomy" (765640S) for more detail (<u>lecture 9</u>), here we discuss it shortly.
- $m_v m_o = -2.5 \log(F_v/F_o)$

In the Vega system, the star Vega (AoV) defines the photometric "zero point" m_0 at all wavelengths (U=B=V=R=I=0.0 mag etc).

Symbol	Flux (erg cm ⁻² s ⁻¹ Å ⁻¹)	$\lambda_0 (\mu m)$	
U	4.22×10^{-9}	0.36	
B	6.40×10^{-9}	0.44	
V	3.75×10^{-9}	0.55	
R	1.75×10^{-9}	0.71	
I	8.4×10^{-10}	0.97	

Table 156 Flux calibration for an AOV star

Standard broad-band filters


It is convenient to measure flux densities or magnitudes within some certain frequency or wavelength range. The total energy measured is then the integral of the source flux times some frequency dependent effective filter response. This last quantity includes all the factors that modify the energy arriving at the top of the Earth's atmosphere.

$$m = -2.5 \log \int_0^\infty F_{\nu} W(\nu) \,\mathrm{d}\nu + \mathrm{constant}$$

 F_v – a star SED W(v) – a filter passband

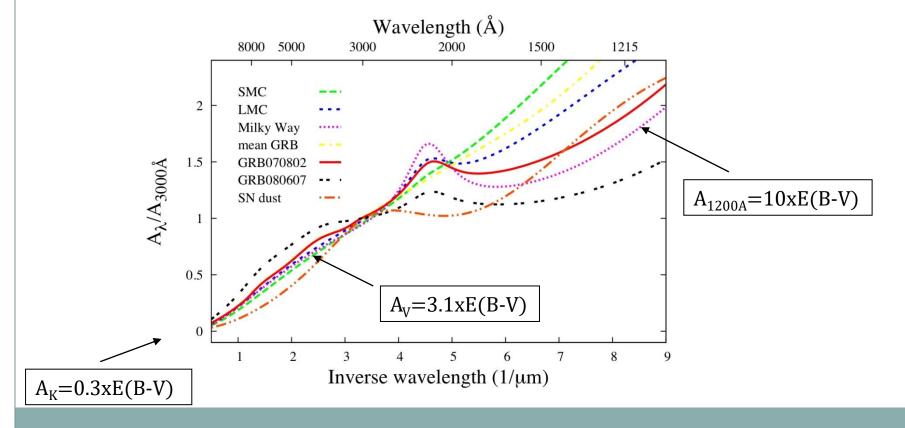
Colour index

• We can define a <u>colour index</u> as the difference between filters relative to Vega e.g. $B - V = m_B - m_{V_c}$ such that stars bluer than A0 have a negative B-V colour and stars redder than Vega have a positive colour e.g. $(B-V)_{Sun} = +0.65$ mag.

$$B - V = -2.5 \log \left(\frac{\int F_{\nu} W_B(\nu) \, \mathrm{d}\nu}{\int F_{\nu} W_V(\nu) \, \mathrm{d}\nu} \right) + 0.710$$
$$U - B = -2.5 \log \left(\frac{\int F_{\nu} W_U(\nu) \, \mathrm{d}\nu}{\int F_{\nu} W_P(\nu) \, \mathrm{d}\nu} \right) - 1.093.$$

e.g., for T_{eff}<10000K:

$$T = \frac{7090}{(B - V) + 0.71} K$$


More on magnitudes

23

- We define the absolute (visual) magnitude (M_V) as the apparent (visual) magnitude of a star of m_V lying at a distance of d=10pc: $M_V=m_V$ (10 pc).
- Because $F \propto d^{-2}$ $M_V - m_V = -2.5 \log[F(10pc)/F(d)] = -5\log(d/10pc) = 5 - 5\log(d/pc)$
- For the Sun ($d=4.85\times10^{-6}$ pc), m_v=-26.75 and M_v=+4.82 mag. The "distance modulus" M_v-m_v=31.57 mag
- Because interstellar medium is not completely transparent, we write $M_V m_V = 5 5 \log(d/pc) A_V$.
- The A_V term is due to interstellar extinction.
 Visually, A_V~ 3.1 E(B-V) for most sight lines.
 E(B-V)=B-V (B-V)_o, i.e. the difference between the observed and intrinsic B-V colour.

Interstellar Extinction

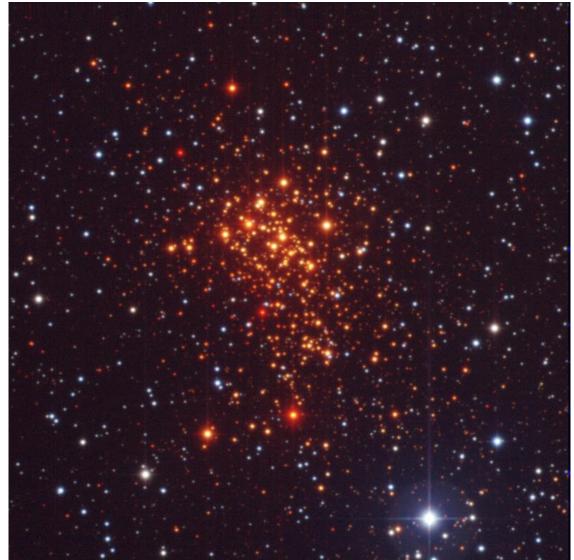

Extinction is MUCH higher at shorter wavelengths, so IR observations of e.g. Milky Way disk probe much further. The extinction to the Galactic Centre (d=8kpc) is approx A_V=30 mag (5500A) versus A_K=3 mag (2µm).

Illustration of interstellar extinction

V-band (5500Å) R-band (7000Å) I-band (9000Å)

VRI-composite of highly reddened cluster Wd1 (E_{B-V}~4)

Bolometric Flux

26

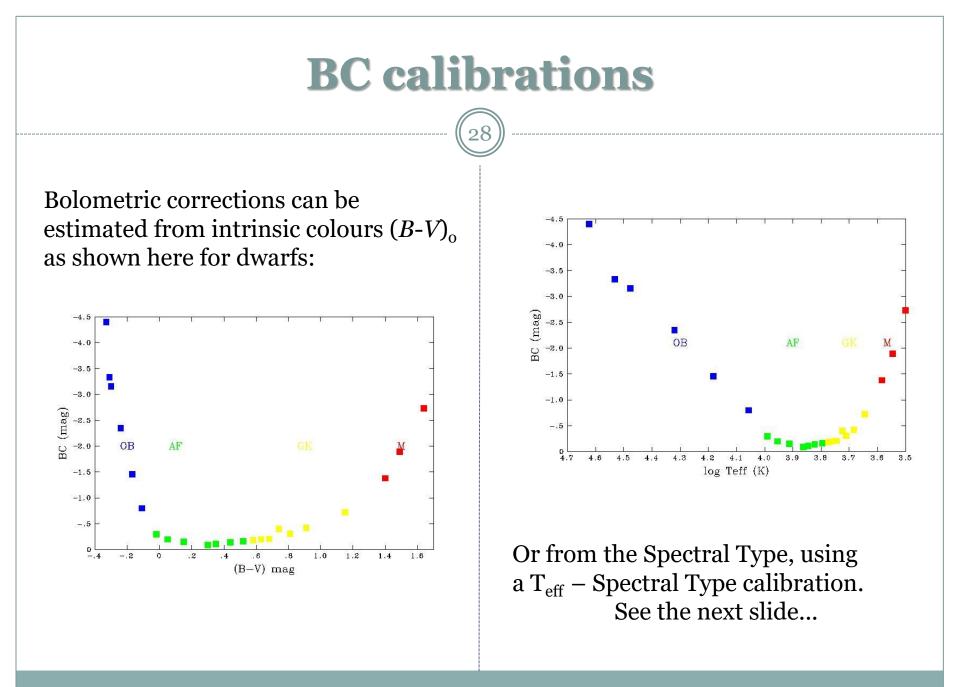
The bolometric flux (erg cm⁻² s⁻¹) from a star received at the top of the Earth's atmosphere is the integral of the spectral flux (measured at a frequency v or a wavelength λ) over all frequencies or wavelengths:

$$F_{Bol} = \int_0^\infty F_{\nu} d\nu = \int_0^\infty F_{\lambda} d\lambda$$

• The luminosity (erg/s) is the bolometric flux from the star integrated over a full sphere (at distance d):

$$L = 4\pi d^2 F_{Bol}$$

• Since the Earth's atmosphere is opaque to UV and some IR radiation one cannot always directly measure the bolometric flux.


Bolometric Corrections

(27)

One can calculate bolometric corrections (BC), primarily from atmospheric models to correct measured fluxes (usually in the V band) for the total (bolometric) flux. Usually expressed in magnitudes:

 $BC = M_{bol} - M_V$ with $M_{bol} = 4.74 - 2.5 \log(L/L_{\odot})$

BC=-0.08 mag for the Sun is a small correction since it emits most radiation in the visual. Hot OB stars have very negative BC's, since most of the energy is emitted in the UV, as are cool M stars with most energy emitted in the IR.

Properties of Main-Sequence Stars

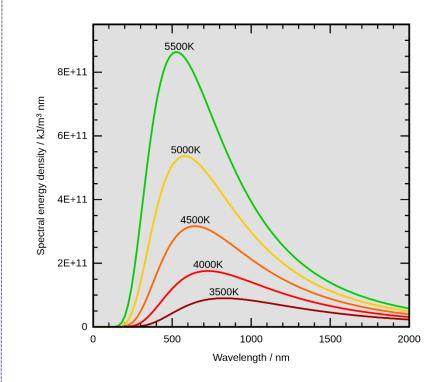
29

Sp	M(V)	B - V	U - B	V - R	R-I	Teff	BC
MAI	N SEQUEN	ICE, V					
05	-5.7	-0.33	-1.19	-0.15	-0.32	42 000	-4.40
09	-4.5	-0.31	-1.12	-0.15	-0.32	34 000	-3.33
B0	-4.0	-0.30	-1.08	-0.13	-0.29	30 000	-3.16
B2	-2.45	-0.24	-0.84	-0.10	-0.22	20 900	-2.35
B5	-1.2	-0.17	-0.58	-0.06	-0.16	15 200	-1.46
B8	-0.25	-0.11	-0.34	-0.02	-0.10	11 400	-0.80
A0	+0.65	-0.02	-0.02	0.02	-0.02	9 7 90	-0.30
A2	+1.3	+0.05	+0.05	0.08	0.01	9 000	-0.20
A5	+1.95	+0.15	+0.10	0.16	0.06	8 180	-0.15
F0	+2.7	+0.30	+0.03	0.30	0.17	7 3 0 0	-0.09
F2	+3.6	+0.35	0.00	0.35	0.20	7 000	-0.11
F5	+3.5	+0.44	-0.02	0.40	0.24	6650	-0.14
F8	+4.0	+0.52	+0.02	0.47	0.29	6250	-0.16
GO	+4.4	+0.58	+0.06	0.50	0.31	5940	-0.18
G2	+4.7	+0.63	+0.12	0.53	0.33	5790	-0.20
G5	+5.1	+0.68	+0.20	0.54	0.35	5 560	-0.21
G8	+5.5	+0.74	+0.30	0.58	0.38	5310	-0.40
KO	+5.9	+0.81	+0.45	0.64	0.42	5 1 5 0	-0.31
K2	+6.4	+0.91	+0.64	0.74	0.48	4830	-0.42
K5	+7.35	+1.15	+1.08	0.99	0.63	4410	-0.72
MO	+8.8	+1.40	+1.22	1.28	0.91	3 840	-1.38
M2	+9.9	+1.49	+1.18	1.50	1.19	3 5 2 0	-1.89
M5	+12.3	+1.64	+1.24	1.80	1.67	3 1 7 0	-2.73

From Allen's Astrophysical Quantities (4th edition)

Solve a problem

30


A B5V star in the LMC (distance 50kpc) has V=13.5 mag, B-V=-0.07 mag.

What is its bolometric luminosity, relative to the Sun?

Properties of the Planck law

- For increasing temperatures, the black body intensity increases for all wavelengths. The maximum in the energy distribution shifts to shorter λ (longer ν) for higher temperatures.
- $\lambda_{max} T = 2.98978 \times 10^7 \text{ Å K}$

is Wien's displacement law for the maximum I_{λ} providing an estimate of the peak emission ($\lambda_{max} = 5175$ Å for the Sun).

Rayleigh-Jeans and Wien approximations

32

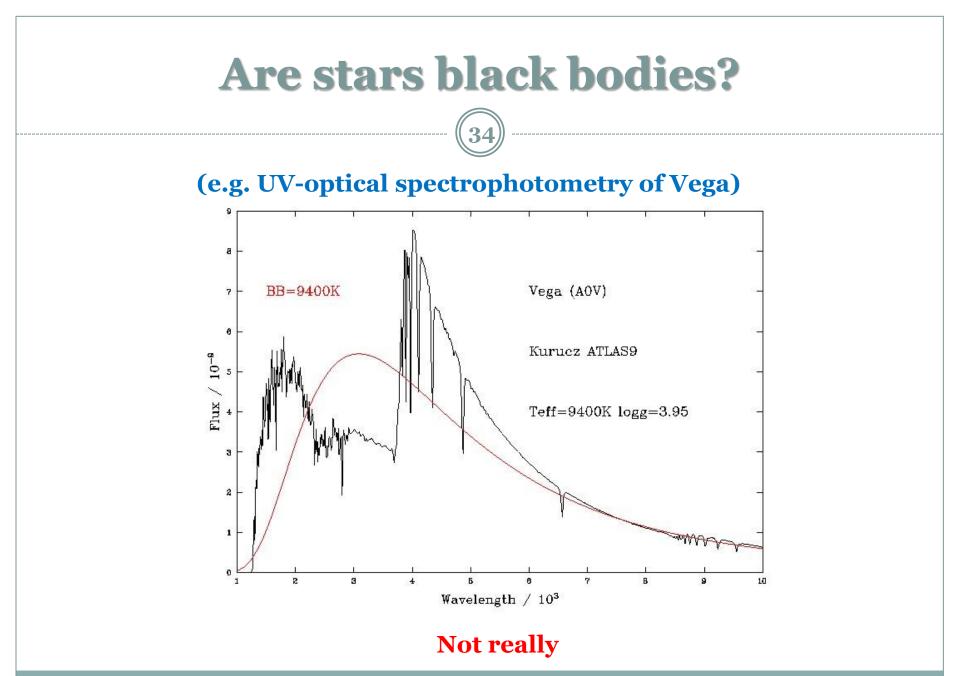
At long wavelengths $\lambda >> \lambda_{max}$ (small frequencies $\nu << \nu_{max}$) the Planck formulae

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1} \qquad B_{\lambda}(T) = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda kT} - 1}$$

can be approximated by the Rayleigh-Jeans law

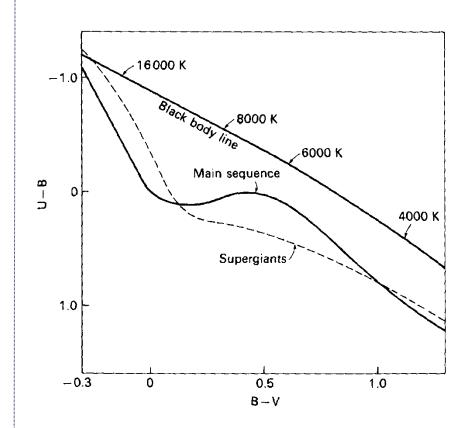
$$B_{\nu}(T) \approx 2 \frac{v^2}{c^2} kT$$
, $B_{\lambda}(T) \approx 2ckT\lambda^{-4}$

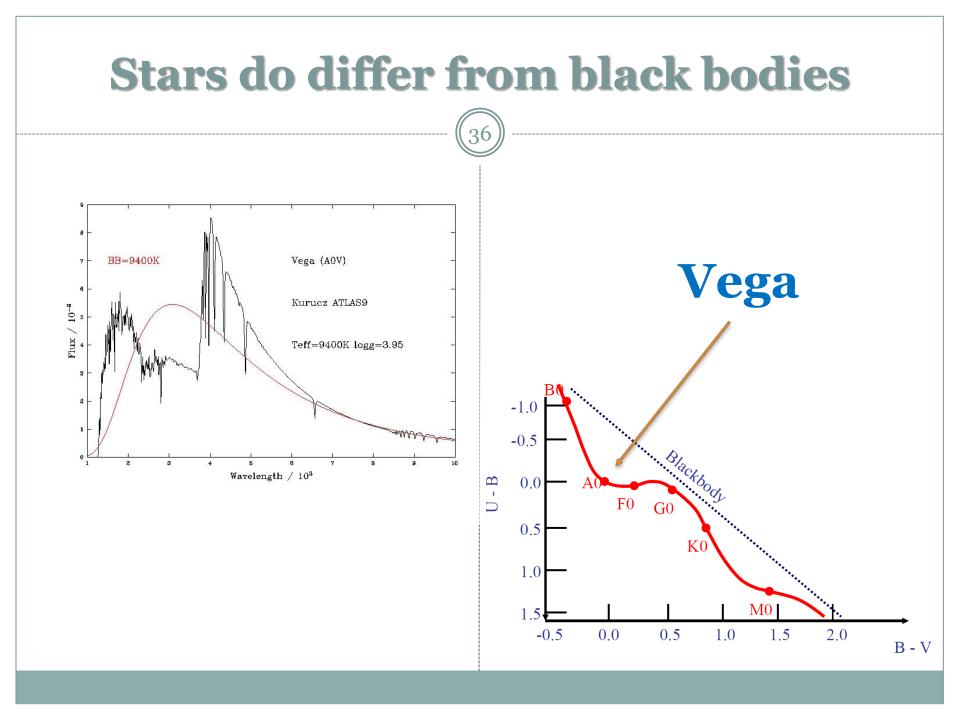
At short wavelengths $\lambda \leq \lambda_{max}$ (large frequencies $v \geq v_{max}$), the Wien law is a good approximation


$$B_{\nu}(T) \approx 2 \frac{hv^3}{c^2} e^{-\frac{hv}{kT}}, \quad B_{\lambda}(T) \approx 2 \frac{hc^2}{\lambda^5} e^{-\frac{hc}{\lambda kT}}$$

Color and brightness temperatures

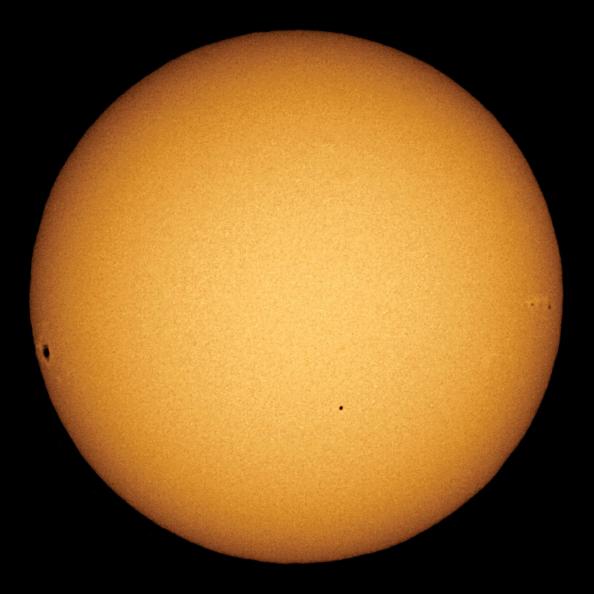
Define brightness temperature as $I_v = B_v(T_b)$ In radio band we get


$$I_v = 2\frac{v^2}{c^2}kT_b$$
, so that $T_b = \frac{c^2}{2v^2k}I_v$ for $hv \ll kT$


Colour temperature T_c is obtained by "fitting" the observed spectrum with the Planck function ignoring normalization. It gives correctly the temperature of the black body source of unknown absolute scale of the intensity.

Stars do differ from black bodies

The observed flux distributions of real stars deviate from black body curves, as indicated here for the UBV colors of dwarfs and supergiants. This difference is due to sources of continuous and line opacity in the stellar photospheres and will be discussed later in this course.

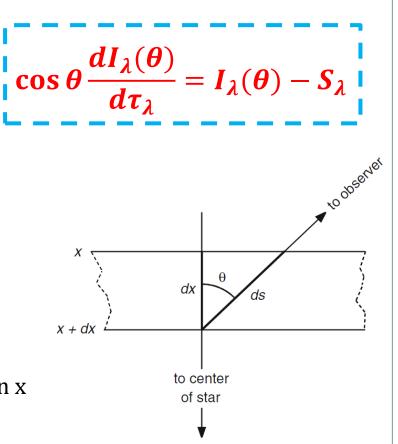


Radiative transfer III

39))

Solar limb darkening

Transfer Equation for Stars


From lecture 6 (side 166):

The plane-parallel transfer equation

(for stars with thin photospheres)

The $\cos(\theta)$ term is because the optical depth is measured along the radial direction *x* and not along the line of sight, i.e $d\tau_{\lambda} = -\kappa_{\lambda} \rho dx$

We are looking from the outside in, along direction **x**

Surface Intensity

42

• To derive the intensity at the **surface**, we can multiply the plane-parallel transfer equation by an integrating factor $e^{-\tau/\cos\theta} = e^{-u}$,

$$\frac{dI_{\lambda}(\theta)}{du}e^{-u} - I_{\lambda}(\theta) \ e^{-u} = -S_{\lambda}e^{-u}$$

• This can be written as

$$\frac{d(I_{\lambda}(\theta)e^{-u})}{du} = -S_{\lambda}e^{-u}$$

• Integrating *du* from 0 to infinity

$$[I_{\lambda}(\theta)e^{-u}]_{0}^{\infty} = -\int_{0}^{\infty}S_{\lambda}(\tau_{\lambda})e^{-u}du$$
$$I_{\lambda}(0,\theta) = \int_{0}^{\infty}S_{\lambda}(\tau_{\lambda})e^{-u}du$$

Limb darkening

----- (43)

Let us assume a linear source function:

 $S_{\lambda}(\tau_{\lambda}) = a_{\lambda} + b_{\lambda}\tau_{\lambda}$

We then derive: $I_{\lambda}(0,\theta) = \int_{0}^{\infty} S_{\lambda}(\tau_{\lambda})e^{-u}du = \int_{0}^{\infty} a_{\lambda}e^{-u}du + \int_{0}^{\infty} b_{\lambda}\tau_{\lambda}e^{-u}du$ Recall $u = \tau/\cos(\theta)$, so $\tau = u\cos(\theta)$ and $I_{\lambda}(0,\theta) = a_{\lambda}\int_{0}^{\infty} e^{-u}du + b_{\lambda}\cos\theta\int_{0}^{\infty} ue^{-u}du$

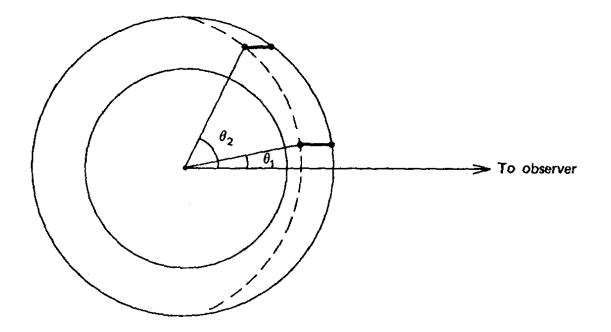
Using the standard integral $\int_0^\infty u^n e^{-u} du = n!$

we obtain

$$I_{\lambda}(0,\theta) = a_{\lambda} + b_{\lambda}\cos\theta = S_{\lambda}(\tau_{\lambda} = \cos\theta)$$

Thus, in the linear approximation for the Source function, the optical depth lies between 0 and 1. From the centre of the star we see radiation leaving the star perpendicular to the surface: $I_{\lambda}(0,0^{\circ})=a_{\lambda}+b_{\lambda}$, whilst at the limb the starlight leaves the surface at an angle $I_{\lambda}(0,90^{\circ})=a_{\lambda}$.

Limb darkening (less light from the limb versus the centre, if $b_{\lambda} > 0$).


Solar limb darkening

- This optical image of the Sun clearly shows limb darkening.
 We see into the atmosphere down to a depth of *τ* =1.
- Limb darkening exists because the continuum source function decreases outward: S_λ(τ_λ) = a_λ + b_λτ_λ, both a_λ and b_λ>0.
- As we look towards the limb, we see higher photospheric layers, which are less bright.

Schematic of limb darkening

Schematic illustration of limb darkening – penetration of different lines of sight (thick lines) to "unit optical depth" (dashed lines) corresponds to different depths in the photosphere, depending on θ . Radiation seen at θ_2 is characteristic of higher (cooler) layers than the radiation seen at position θ_1

