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 An ordinary classical gas: 𝑃gas ∝ 𝑇 → 0 as 𝑇 → 0

 Simultaneously, the mean speed of particles in the gas also goes to zero: 

𝑣 = 2𝑘𝑇/𝑚

 The momenta are given by:  px=mvx ; py=mvy ; pz=mvz

 … if we plot the momenta of particles in a 3D space of px, py, and pz then as T
decreases the particles become concentrated near the origin:
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At low enough temperatures / high enough densities, the concentration of particles 
with similar (low) momenta would violate the Pauli exclusion principle:

No two electrons can occupy the same quantum state

i.e. have the same momentum, spin, and location.

To avoid violating the exclusion principle, electrons in a dense, cold gas must have 
larger momenta than we would predict classically. 

Since the pressure P is mean rate of transport of momentum across unit area

𝑃 =
1
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𝑣𝑝𝑛 𝑝 𝑑𝑝

… larger momentum means higher pressure. 

This quantum mechanical source of pressure is degeneracy pressure.

…where n(p)dp is the number 
of particles with momentum 
between p and p+dp
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This quantum mechanical source of pressure is degeneracy pressure. 
We will discuss it later.

 Non-relativistic degeneracy pressure (speeds v ≪ c) :

𝑃deg = 𝐾1𝜌5/3 = 𝐾1𝜌1+
1
𝑛

 K1 is constant

 Does not depend upon temperature for low enough T

 Depends upon composition via the relation between Ne and ρ 

 Relativistic degeneracy pressure :
𝑃deg = 𝐾2𝜌4/3

 K2 is another constant

 Equation of state for relativistic degenerate matter, which applies at high density. This is a “softer” equation of 
state, since P rises more slowly with increasing density than for the non-relativistic case.

A polytrope of 
index n=3

A polytrope of 
index n=1.5

A relation of the form 𝑃 = 𝐾𝜌1+
1

𝑛 where  K and n  are constants is called a polytropic relation, and n  is the polytropic index.

𝑃𝑖𝑑𝑒𝑎𝑙 =
𝑘

𝜇𝑚𝑝
𝜌𝑇



When do the different pressures matter?
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Different types of star occupy different portions of the plane:

 Solar-type stars - ideal gas throughout

 Massive stars - radiation pressure

 White (and brown) dwarfs - non-relativistic degeneracy pressure

Relativistic degeneracy implies an unstable equation of state, so no stable stars in 
that part of the plane.



Radiation Pressure
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We have already showed before that radiation pressure can be neglected for Solar-type stars:

𝑃𝑟𝑎𝑑

𝑃𝑔
= ൘

𝑎𝑇4

3

𝑘𝑇𝜌

𝜇𝑚𝑝
=

𝜇𝑎

3ℜ

𝑇3

𝜌
≈ 10−4 (for the Sun)

But becomes very important for early-type stars due to the T 4 sensitivity.

In which stars are gas and radiation pressure important?

𝑃𝑟𝑎𝑑 =
𝑎𝑇4

3

𝑃𝑔 =
ℜ𝑇𝜌

𝜇

equal when 𝑇3 =
3ℜ

𝑎𝜇
𝜌

From the virial theorem (see Lecture 3):  

ത𝑇 ∝
𝑀

𝑅


𝑃𝑟𝑎𝑑

𝑃𝑔
∝ 𝑀2

i.e. Prad becomes more significant in higher mass stars. 



Effect of radiation pressure
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For stars in which radiation pressure plays a non-negligible role we can write the 
generalized form of the equation of hydrostatic support (Lecture 2):

𝑑𝑃(𝑟)

𝑑𝑟
+ 𝑔𝜌 𝑟 = 𝑎𝜌 𝑟

Then
𝑑𝑃(𝑟)

𝑑𝑟
= −𝑔𝜌 𝑟 −

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −𝑔eff 𝑟 𝜌 𝑟

From Lecture 6 (slide 168):
𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹 ⟹ 𝑔eff 𝑟 = 𝑔 −

𝜅𝑅

𝑐
𝐹

Consider relative contributions of radiation and (ideal) gas pressures:

𝑃𝑔 = 𝛽𝑃 =
ℜ𝑇𝜌

𝜇
, 𝑃𝑟𝑎𝑑 = 1 − 𝛽 𝑃 =

𝑎𝑇4

3

Exclude temperature: 𝑃 =
ℜ

𝜇

4 3

𝑎

1−𝛽

𝛽4

1/3

𝜌4/3 ⟹ 𝑃 = 𝐾𝜌1+
1

𝑛
A polytrope 
of index n=3



Opacity (1)
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Concept of opacity was introduced when deriving the equation of radiation transport. 
It will be discussed extensively in the Stellar atmospheres part of this course. 
Opacity is the resistance of material to the flow of radiation through it. In most stellar interiors 
it is determined by all the processes which scatter and absorb photons.

Four main processes:

 Bound-bound absorption:
 is related to photon-induced transitions of a (bound) electron in atoms or ions to a higher energy state by the 

absorption of a photon. The atom is then de-excited either spontaneously or by collision with another particle, whereby 
a photon is emitted. Although this is limited to certain transition frequencies, the process can be efficient because the 
absorption lines are strongly broadened by collisions. 

 Bound-free absorption:
 which is another name for photoionization - the removal of an electron from an atom (ion) caused by the absorption of 

a photon. The inverse process is radiative recombination. 

 Free-free absorption:
 the absorption of a photon by a free electron, which makes a transition to a higher energy state by briefly interacting 

with a nucleus or an ion. The inverse process, leading to the emission of a photon, is known as bremsstrahlung. 

 [Electron] Scattering: 
 the scattering of a photon by a free electron, the photon's energy remaining unchanged (known as Thomson scattering). 



Opacity (2)
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Which process is most important in the deep stellar interiors?

 Temperatures are very high there, thus the last two processes are dominant, simply because 
the material is almost completely ionized, there are very few bound electrons. 

 Furthermore, the energy of most photons in the Planck distribution is of the order of keV, 
whereas the separation energy of atomic levels is only a few tens eV. Hence most photons 
interacting with bound electrons would set them free. Thus bound-bound (and even bound-
free)  transitions have extremely low probabilities, interactions occurring predominantly 
between photons and free electrons. 

 Thus, the most dominant process in the deep stellar interiors is electron scattering.

The opacity per unit mass of material in this case is 𝜅𝑒 =
𝑛𝑒𝜎𝑇

𝜌
, 

where σT =6.6510-25 cm2 is the Thomson cross section. The opacity is therefore:

𝜅𝑒 ≅ 0.2(1 + X) cm2g−1

The opacity resulting from electron scattering is temperature and density independent!

𝑛𝑒 =
𝜌

𝜇𝑒𝑚𝐻



Opacity (3)
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We need an expression for opacity to solve the equations of stellar structure. For 
stars in thermodynamic equilibrium with only a slow outward flow of energy, the 
opacity should have the form κ = κ (ρ, T, chemical composition)

Opacity coefficients may be calculated, taking into account all possible interactions 
between the elements and photons of different frequencies. This requires an 
enormous amount of calculation and is beyond the scope of this course. Such 
calculation are done e.g. by the OPAL opacity project at Lawrence Livermore National 
Laboratory.

When it is done, the results are usually approximated by the relatively simple 
formula:

𝜅 = 𝜅0𝜌𝛼𝑇𝛽

where α, β are slowly varying functions of density and temperature and κ 0 is a 
constant for a given chemical composition.



Opacity (4)
211

Figure shows opacity as a function of
temperature for a star of given ρ (10-4 g cm-3). 
Solid curve is from detailed opacity calculations. 
Dotted lines are approximate power-law forms.

 At high T : κ is low and remains constant. 
Most atoms are fully ionized, high photon 
energy, hence free-free absorption unlikely. 
Dominant mechanism is electron scattering, 
independent of T, α =β =0:   

𝜅 = 𝜅1 = 𝜎𝑇/𝑚𝐻𝜇𝑒 (curve c)

 Opacity is low a low T, and increases towards 
higher T.  Most atoms are not ionized, few 
electrons available to scatter photons or for 
free-free absorption. Approximate analytical 
form is α =1/2 , β =4:  

𝜅 = 𝜅2𝜌0.5𝑇4 (curve a)

 At intermediate T , κ peaks, when bound-free and free-free absorption are very important, then 
decreases with T (Kramers opacity law): 

𝜅 = 𝜅3𝑇−7/2 (curve b)

 𝜅1, 𝜅2, 𝜅3 are constants for stars of given chemical composition but all depend on composition.



Summary and conclusions
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 We have learned the approximate forms of the equation of 
state and the opacity.

 Next lecture: A method of simplifying the solution of the 
stellar structure equations.

 After that we will discuss nuclear reactions and move on to 
discussing the output of full numerical solutions of the 
equations and realistic predictions of modern theory


	Slide 202: Degeneracy Pressure (1)
	Slide 203: Degeneracy Pressure (2)
	Slide 204: Degeneracy Pressure (3)
	Slide 205: When do the different pressures matter?
	Slide 206: Radiation Pressure
	Slide 207: Effect of radiation pressure
	Slide 208: Opacity (1)
	Slide 209: Opacity (2)
	Slide 210: Opacity (3)
	Slide 211: Opacity (4)
	Slide 212: Summary and conclusions

