
Imagine first the case in which I0=0,   

i.e. solely emission from the volume of gas:                𝐼𝜆 = 𝑆𝜆(1 − 𝑒−𝜏𝜆) 

We have two limiting cases:

• Optically thin case (≪1)

EXAMPLE:  Hot, low density nebula

• Optically thick case (≫1)

EXAMPLE:  Black body, S=B(T)

𝑒−𝜏𝜆 ≈ 1 − 𝜏𝜆 ⇒ 𝐼𝜆 = 𝜏𝜆𝑆𝜆

𝑒−𝜏𝜆 ≈ 0 ⇒ 𝐼𝜆 = 𝑆𝜆

Opacity  versus     ➔    Intensity versus  

Solution to transfer equation
149

𝐼𝜆 = 𝑆𝜆(1 − 𝑒−𝜏𝜆)+𝐼𝜆0𝑒−𝜏𝜆



Hot nebular gas: emission lines –optically thin

150



Imagine now I00, 

again with two extreme cases:

• Optically thin case (≪1)

(a) If I0>S, so there is something 
subtracted from the original intensity 
which is proportional to the optical 
depth – we see absorption lines on the 
continuum intensity I.                    

EXAMPLE: stellar photospheres

(b) If I0<S, we will see emission lines on 
top of the background intensity.

      Example: Solar UV spectrum

• Optically thick case (≫1):

      Planck function as before.

𝐼𝜆 = 𝐼𝜆0(1 − 𝜏𝜆) + 𝜏𝜆𝑆𝜆 = 𝐼𝜆0 + 𝜏𝜆(𝑆𝜆 − 𝐼𝜆0)

𝐼𝜆 = 𝑆𝜆

Absorption versus emission
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𝐼𝜆 = 𝑆𝜆(1 − 𝑒−𝜏𝜆)+𝐼𝜆0𝑒−𝜏𝜆

Opacity  versus     ➔    Intensity versus  



Outward decreasing temperature

 In a star absorption lines are 
produced if I0 > S i.e. the intensity 
from deep layers is larger than the 
source function from top layers. 

 In local TE (LTE), the source function 
is B(T), so the Planck function for 
the deeper layers is larger than the 
shallower layers. Consequently the 
deeper layers have a higher 
temperature than the top layers 
(since the Planck function increases 
at all wavelengths with T). 

 (Instances occur where LTE is not 
valid, and the source function 
declines outward in parallel with an 
increasing temperature).

Solar Spectrum (4300-4320Ang)

152



Emission line spectra:
 Optically thin volume of gas with no background 

illumination (emission nebula)
 Optically thick gas in which the source function increases 

outwards (UV solar spectrum)

Absorption line spectra:
 Optically thin gas in which source function declines 

outward, generally T decreases outwards (Stellar 
photospheres)

 Optically thin gas penetrated by background radiation (ISM 
between us and the star) 

Absorption versus emission lines
153



Things we already learned about RT
154

 We defined the specific intensity 𝐼𝜆, emission (𝑗𝜆 and 𝜀𝜆) and absorption coefficients (𝜅𝜆
and 𝛼𝜆), optical depth 𝑑𝜏𝜆, the source function 𝑆𝜆.

 We have derived and solved (assuming constant 𝑆𝜆) the (parallel-ray) equation of 
radiative transfer (RTE):

𝑑𝐼𝜆

𝑑𝜏𝜆
= −𝐼𝜆 + 𝑆𝜆

𝐼𝜆 = 𝑆𝜆(1 − 𝑒−𝜏𝜆)+𝐼𝜆0𝑒−𝜏𝜆

 In TE (thermodynamic equilibrium), the source function equals the Planck function, 
𝑆𝜆 = 𝐵𝜆.

 The law of Kirchhoff:            𝐵𝜆 = 𝑗𝜆/𝜅𝜆 = 𝜀𝜆/𝛼𝜆

 Today, we will define other important terms which we will use later.



Specific and mean Intensity
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From the previous lecture:

𝐼𝜆 =
𝐸𝜆

cos 𝜃 𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡

Let's try in another way:
 The (specific) intensity 𝑰𝝀 is a measure of brightness: 

𝐼𝜆 =
𝑑𝐸𝜆

cos 𝜃 𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡

𝑑𝜆, 𝑑𝜎, 𝑑𝜔, 𝑑𝑡→ 0 dE diminishes to zero as well

 In this way, we define the specific intensity at a “point” on the surface, at a given time, in 
a direction 𝜃, at a wavelength 𝜆 - brightness.

The mean intensity J is the directional average of the specific intensity 
(over 4 steradians):

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔

Integrated over the whole unit sphere 
centered on the point of interest.



Mean intensity and Energy density
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 The mean intensity J is related to the energy density u:

 Energy radiated through area element 𝑑𝜎 during time 𝑑𝑡:

l = c 𝑑𝑡 dV = l 𝑑𝜎 = c 𝑑𝑡 𝑑𝜎
 Hence, the energy contained in volume element dV per

wavelength interval is:

𝑢𝜆𝑑𝑉𝑑= ර𝐼𝜆 𝑑𝜔 𝑑𝜆 𝑑𝜎 𝑑𝑡 = 4𝜋𝐽𝜆

𝑑𝑉

𝑐
𝑑𝜆

𝑢𝜆 =
4𝜋

𝑐
𝐽𝜆

𝑒𝑟𝑔

𝑐𝑚3Å

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔

l
dV

d𝜎

d

𝑑𝐸𝜆 = 𝐼𝜆 𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡 

𝑢 = න
0

∞

𝑢𝜆 𝑑𝜆 =
4𝜋

𝑐
න

0

∞

𝐽𝜆 𝑑𝜆  
𝑒𝑟𝑔

𝑐𝑚3

Total radiation emerge in volume element



Flux (1)
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 From an observational point of view, we are generally more interested in the energy 
flux or flux ( L, L ) and the flux density ( F, F ). 
Flux density gives the power of the radiation per unit area and hence has 
dimensions of erg s-1 cm-2 Å-1 (or erg s-1 cm-2 Hz-1). 
Observed flux densities are usually extremely small and therefore (especially in 
radio astronomy) flux densities are often expressed in units of the Jansky (Jy), 
where 1 Jy=10-23 erg s-1 cm-2 Hz-1.

 You should be aware - and beware - that different authors define the terms flux 
density, flux and intensity differently, and they are sometimes used 
interchangeably! 

 We will often call flux density as just flux.

 Standard definition: 
Flux describes any effect that appears to pass or travel through a surface or 
substance. In transport phenomena (radiative transfer, heat transfer, mass transfer, 
fluid dynamics), flux is defined as the rate of flow of a property per unit area, which 
has the dimensions [quantity][time]−1 [area]−1. 
 For example, the magnitude of a river's current, i.e. the amount of water that flows 

through a cross-section of the river each second is a kind of flux.



In radiative transfer, flux is related to the intensity
(“specific” is often omitted):

 Flux F, is a measure of the net energy flow across an area 𝑑𝜎, over a 
time 𝑑𝑡, in a 𝑑𝜆. The only directional significance is whether the energy 
crosses 𝑑𝜎 from the top or from the bottom. Then we can write: 

The solid angle 𝑑𝜔 appears 
for 𝑰𝝀 but not for 𝑭𝝀

𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔

Flux (2)
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𝐹𝜆 =
ׯ 𝑑𝐸𝜆

𝑑𝜆 𝑑𝜎 𝑑𝑡
 Integrated over all directions.

𝐼𝜆 =
𝑑𝐸𝜆

cos 𝜃𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡
 

substitute

𝑒𝑟𝑔

Å 𝑐𝑚2 𝑠

Thus, flux F is the projection of the specific intensity I 

in the radial direction (integrated over all solid angles)

The amount of energy going through 1 cm2 
per second per 1Å into the solid angle d 
in the direction inclined by the angle   to 
the normal of the area.



Flux (3)
159

Expressing d by means of θ and φ,

If there is no azimuthal dependence for I then

𝐹𝜆 = ර 𝐼𝜆 cos 𝜃 𝑑𝜔 = න

0

2𝜋

dφ න

0

𝜋

𝐼𝜆 cos 𝜃 sinθ dθ

In the plane-parallel or spherical case, we 
do not find any dependence of I on the 
longitude φ

𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔 = 2𝜋 න

0

𝜋

𝐼𝜆 cos 𝜃 sinθ dθ

𝐹𝜆 = −2𝜋 න

0

𝜋

𝐼𝜆 cos 𝜃 d (cosθ)

d = sinθ dθ dφ



Meaning of flux:
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𝐹 = −2𝜋 න

0

𝜋

𝐼𝜆 cos 𝜃 d (cosθ) = 2𝜋 න

−1

1

𝐼(𝜇) 𝜇 d𝜇

Radiation flux = netto energy going through area
Decomposition into two half-spaces:

= 2𝜋 න
0

1

𝐼(𝜇) 𝜇 d𝜇 + 2𝜋 න
−1

0

𝐼(𝜇) 𝜇 d𝜇

= 2𝜋 න
0

1

𝐼(𝜇) 𝜇 d𝜇 − 2𝜋 න
0

1

𝐼 −𝜇 𝜇 d𝜇 =  𝑭+ − 𝑭−

=cos 

Netto = Outwards - Inwards

Special cases: at the surface of a star F − = 0, so that F = F + 

          at the centre of a star, isotropic radiation field: F=0



Intensity, Flux, and Luminosity
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 I is independent of distance from the source and can only be 
measured directly if we resolve the radiating surface. 
In contrast, F obeys the inverse square law and is all that may 
be measured for most stars.

 Indeed, if we consider a star as the source of radiation, then 
the flux emitted by the star into a solid angle dω is dL=dωr2F, 
where F is the flux density observed at a distance r from the 
star. If the star radiates isotropically then radiation at a 
distance r will be distributed evenly on a spherical surface of 
area 4πr2 and hence we get the relationship:

L=4πr2F

 It is also usual to refer to the total flux from a star as the 
Luminosity, L.

dS ≡ r2 d



Surface brightness
162

 Flux density arriving from a point source is inversely proportional to 
the distance. But what about an extended luminous object such as a 
nebula or galaxy? The situation is slightly more complicated. 

 The surface brightness is defined as the flux density per unit solid 
angle. The geometry of the situation results in the interesting fact 
that the observed surface brightness is independent of the distance 
of the observer from the extended source. 

 This slightly counter-intuitive phenomenon 
can be understood by realizing that although 
the flux density arriving from a unit area is 
inversely proportional to the distance to 
the observer, the area on the surface of 
the source enclosed by a unit solid angle 
at the observer is directly proportional to 
the square of the distance. 

 Thus, the two effects cancel each other out.

dS ≡ r2 d



Mean Intensity, Flux and K-integral
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 The mean intensity J is the directional average of the specific intensity 
(over 4 steradians):

 Flux F, is the projection of the specific intensity in the radial direction
(integrated over all solid angles):

 There is also a K-integral which we will use later:

𝐽𝜆 =
1

4𝜋
ර𝐼𝜆𝑑𝜔

𝐹𝜆 = ර𝐼𝜆 cos 𝜃 𝑑𝜔

𝐾𝜆 =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔



K-integral and radiation pressure
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 K-integral is related to the radiation pressure:

 A photon has momentum 𝑝𝜆 = 𝐸𝜆/𝑐

 Consider photons transferring momentum to a solid wall. 
Force:

 Pressure:

𝐾𝜆 =
1

4𝜋
ර𝐼𝜆 cos2 𝜃 𝑑𝜔

𝑑𝑃𝜆 =
𝐹

𝑑𝜎
=

1

𝑐

𝑑𝐸𝜆 cos 𝜗

𝑑𝑡 𝑑𝜎
=

1

𝑐
𝐼𝜆 cos2 𝜗 𝑑𝜔 𝑑𝜆

𝐼𝜆 =
𝑑𝐸𝜆

cos 𝜃𝑑𝜆 𝑑𝜎 𝑑𝜔 𝑑𝑡
 

𝑃𝑟𝑎𝑑(𝜆) =
1

𝑐
ර

4𝜋

𝐼𝜆 cos2 𝜗 𝑑𝜔 =
4𝜋

𝑐
𝐾𝜆

𝐹 =
𝑑𝑝𝜆⊥

𝑑𝑡
=

1

𝑐

𝑑𝐸𝜆

𝑑𝑡
cos 𝜗



Plane-parallel vs spherical geometry
165

 Parallel-ray RTE is a very simple 
approach.

 In principal, we need to consider 
spherical geometry when 
calculating the transfer equation 
in stars.

 Fortunately, the geometrical 
thickness of most stellar 
photospheres is small compared 
to their radii, permitting the 
plane-parallel approximation, 
r →∞

𝑑𝐼𝜆

𝑑𝑠
= − cos 𝜗

𝜕𝐼𝜆

𝜕𝑟

angle 𝜗 between ray and radial direction 
is not constant



The plane-parallel transfer equation 
(for stars with thin photospheres) 

is identical to the parallel-ray transfer equation 
(for ISM studies), 

except for 

1. the cos() term, because the optical depth 
is measured along the radial direction x 
and not along the line of sight, i.e
d=- dx

2. sign change, since we are now looking 
from the outside in, along direction x.

The full spherical geometry transfer equation is 
necessary for supergiants.
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𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

𝑑𝐼𝜆

𝑑𝜏𝜆
= −𝐼𝜆 + 𝑆𝜆

Transfer Equation for Stars
166



 We will try to solve the plane-parallel RTE  later 
when we start discussing stellar photospheres.

 But now let’s concentrate on stellar interiors.

 The plane-parallel RTE  leads to two particularly useful relations between the 
various quantities describing the radiation field. 

 First, recall that S depends only on the local conditions of the gas, independent of 
direction. Then, integrating over all solid angles, we get

𝑑

𝑑𝜏𝜆
ර𝐼𝜆 cos 𝜃 𝑑𝜔 = ර𝐼𝜆𝑑𝜔 − 𝑆 ර𝑑𝜔

𝑑𝐹𝜆

𝑑𝜏𝜆
= 4𝜋( 𝐽𝜆 − 𝑆 )
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𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

The plane-parallel RTE
167



 The second relation: multiply the plane-parallel 
RTE by cos() and again integrate over all solid 
angles: 

𝑑

𝑑𝜏𝜆
ර𝐼𝜆 cos2 𝜃 𝑑𝜔 = ර𝐼𝜆 cos 𝜃 𝑑𝜔 − 𝑆𝜆 රcos 𝜃 𝑑𝜔

𝑑𝑃𝑟𝑎𝑑,𝜆

𝑑𝜏𝜆
=

1

𝑐
𝐹𝜆

𝑑𝑃𝑟𝑎𝑑,𝜆

𝑑𝑟
= −

𝜅𝜆𝜌

𝑐
𝐹𝜆

 Integrating the radiation pressure and flux over wavelengths, and replacing 
𝜅𝜆by a weighted mean of opacity 𝜅𝑅 − the Rosseland mean opacity 
[we will introduce it later]: 

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹
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𝐜𝐨𝐬 𝜽
𝒅𝑰𝝀(𝜽)

𝒅𝝉𝝀
= 𝑰𝝀(𝜽) − 𝑺𝝀

Radiative diffusion (1)
168

𝑃𝑟𝑎𝑑,𝜆 =
1

𝑐
ර

4𝜋

𝐼𝜆 cos2 𝜗 𝑑𝜔 ර cos 𝜃 𝑑𝜔 = න

0

2𝜋

dφ න

0

𝜋

cos 𝜃 sinθ dθ=0

d=-  dx

d = sinθ dθ dφ



𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹

 This relation can be interpreted as that the net radiative flux is driven by 
differences in the radiation pressure, with a “photon wind” blowing from high to 
low Prad. 

 Thus, the transfer of energy by radiation is a process involving the slow upward 
diffusion of randomly walking photons, drifting toward the surface in response to 
tiniest differences in the radiation pressure.

 As we see, the description of a “ray” of light is in fact only a convenient fiction, 
used to define the direction of motion instantly shared by the photons that are 
continually absorbed and scattered into and out of the beam. 
 It can be shown that a photon generated near the centre of the Sun will be absorbed and re-emitted 

~1022 times before it escapes at the surface and the time it takes to do this is approximately equal to 
the thermal timescale of the Sun (a few × 107 years). This means that when we observe energy 
radiated at the solar surface, we are usually seeing the results of nuclear reactions which occurred tens 
of millions of years ago.
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Radiative diffusion (2)
169



 The radiation pressure gradient:

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜅𝑅𝜌

𝑐
𝐹 =

4

3
𝑎𝑇3

𝑑𝑇

𝑑𝑟
 Then

𝑑𝑇

𝑑𝑟
= −

3

4𝑎𝑐

𝜅𝑅𝜌

𝑇3 𝐹

 Let’s write Flux in terms of the local radiative luminosity of the star at radius r:

𝐹(𝑟) =
𝐿(𝑟)

4𝜋𝑟2

 The temperature gradient for radiative transport becomes:

𝑑𝑇

𝑑𝑟
= −

3

4𝑎𝑐

𝜅𝑅𝜌

𝑇3

𝐿 𝑟

4𝜋𝑟2 = −
3

64𝜋𝜎𝑆𝐵𝑟2

𝜅𝑅𝜌

𝑇3 𝐿(𝑟)

170

Recall: the pressure exerted by photons 
on the particles in a gas is: 

𝑃𝑟𝑎𝑑 =
𝑎𝑇4

3

where radiation density constant

𝑎 =
4𝜎𝑆𝐵

𝑐

The Radiative Temperature Gradient
170

The fourth 
equation of 
stellar structure. 



Summary of the lectures on RT
171

 In addition to the specific intensity 𝐼𝜆, emission (𝑗𝜆 and 𝜀𝜆) and absorption coefficients 
(𝜅𝜆 and 𝛼𝜆), optical depth 𝑑𝜏𝜆, the source function 𝑆𝜆, we defined the mean intensity 𝐽𝜆
and the energy density, radiative flux 𝐹𝜆 and luminosity L, K-integral and the radiation 
pressure 𝐹𝑟𝑎𝑑.

 We derived the plane-parallel equation of radiative transfer (RTE):

cos 𝜃
𝑑𝐼𝜆(𝜃)

𝑑𝜏𝜆
= 𝐼𝜆(𝜃) − 𝑆𝜆

 We have also derived the fourth differential equation of stellar structure 
(the temperature gradient for radiative transport ):

𝑑𝑇

𝑑𝑟
= −

3

64𝜋𝜎𝑆𝐵𝑟2

𝜅𝑅𝜌

𝑇3
𝐿(𝑟)

 Now we have all four equations, which govern the structure of stars. 
Let’s now start searching for possible ways to solve them.
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