Observational Astronomy

Problems Set 3: Solutions.

1. Which has a greater energy flux, 10 photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at $10 \AA$ or 10^{5} photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at $5000 \AA$?

Answer:
$\mathrm{F}_{\lambda}=\mathrm{N} \times \mathrm{hv}=\mathrm{N} \times \mathrm{hc} / \lambda: \mathrm{F}_{10 \AA}=1.99 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \quad \mathrm{~F}_{5000 \AA}=3.97 \times 10^{-7} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
Answer: 10^{5} photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at $5000 \AA$ are larger $\left(3.97 \times 10^{-7}>1.99 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$

Or $\quad F_{5000 \AA} / F_{10 \AA}=N_{5000 \AA} / N_{10 \AA} \times 10 \AA / 5000 \AA=10^{5} / 10 \times 10 / 5000=20$
2. It is often claimed that stellar magnitude errors can be taken as fractional errors of photometric accuracy. Although this is not quite correct but close to it. Prove it.

Solution:

$$
F \sim 2.512^{-m}=10^{-0.4 m}
$$

From Statistics: $\sigma_{q}=\left|\frac{d q}{d x}\right| \sigma_{x} \quad \rightarrow$

$$
\sigma_{F}=\left|\frac{d F}{d m}\right| \sigma_{m}=\left|\frac{2.512^{-m}}{d m}\right| \sigma_{m}=\ln 2.512 \cdot 2.512^{-m} \sigma_{m}=0.921 F \sigma_{m}
$$

or

$$
\begin{gathered}
\sigma_{F}=\left|\frac{10^{-0.4 m}}{d m}\right| \sigma_{m}=10^{-0.4 m} \cdot \ln 10 \cdot 0.4=0.921 \cdot 10^{-0.4 m} \sigma_{m}=0.921 F \sigma_{m} \\
\frac{\sigma_{F}}{F}=0.921 \sigma_{m}
\end{gathered}
$$

3. A star has a measured I-band magnitude of 22.0. How many photons per second are detected from this star by the William Herschel Telescope on La Palma (4.2 m diameter), assuming that the telescope and imaging optics have a throughput of 60%, the detector has a quantum efficiency of 80%, the sky has a brightness of 20 magnitudes per square arcsec, and the seeing is 1 arcsec . Estimate the exposure time required to detect the star at a signal-to-noise ratio of 20.

Solution:

How many photons per second are detected from this star by the William Herschel Telescope: From Lecture 10, slide 411:
$N_{\text {star }}=\eta \varepsilon_{\text {atm }} \varepsilon_{\text {tel }} \varepsilon_{\text {filt }} \varepsilon_{\text {win }} \varepsilon_{\text {geom }} \phi \Delta \lambda A t=\eta \varepsilon \phi_{\text {star }} \Delta \lambda A t$
$\eta=0.8$
$\varepsilon=\varepsilon_{\text {atm }} \varepsilon_{\text {tel }} \varepsilon_{\text {filt }} \varepsilon_{\text {win }}=0.6$
$\Delta \lambda=1500 \AA$
$A=\pi D^{2} / 4=138544 \mathrm{~cm}^{2}$
For simplicity, we can assume that $\varepsilon_{\text {geom }}=1.0$

However, the WHT telescope is of a Ritchey Chretien Cassegrain system, it has a secondary mirror with the diameter 1.0 m (e.g, https://www.ing.iac.es/PR/wht_info/whtoptics.html). Then from Lecture 10 , slide $410, \varepsilon_{\text {geom }}=0.94$
$\phi_{\text {star }}=F / h v=F \lambda / h c=F_{0} \lambda / h c \times 2.512^{-\mathrm{m}}=7.18 \times 10^{-7}$ photons s $\mathrm{cm}^{-2} \AA^{-1}$
Thus, $\mathrm{N}_{\text {star }}=0.8 \times 0.6 \times 0.94 \times 7.18 \times 10^{-7} \times 1500 \times 10^{-8} \times 138544$

Answer:
from the star $\mathrm{N}_{\text {star }} \sim 67$ phot $/ \sec \left(\sim 72\right.$ if $\left.\varepsilon_{\text {geom }}=1.0\right)$
from the sky $\mathrm{N}_{\text {sky }} \sim 425$ phot/sec from square $\operatorname{arcsec}\left(\sim 452\right.$ if $\varepsilon_{\text {geom }}=1.0$)

Estimate the exposure time required to detect the star at a signal-to-noise ratio of 20.
From Lecture 8, slide 360:
$\mathrm{S} / \mathrm{N}=\frac{N_{*} t}{\sqrt{N_{*} t+2 N_{s k y} t}} \rightarrow \frac{N_{*} \sqrt{t}}{\sqrt{N_{*}+2 N_{s k y}}} \rightarrow \mathrm{t}=81 \mathrm{sec}\left(\sim 76 \mathrm{sec}\right.$ if $\left.\varepsilon_{\text {geom }}=1.0\right)$
4. Calculate the flux F_{λ} of a star (in erg s${ }^{-1} \mathrm{~cm}^{-2} \AA^{-1}$) having Vega magnitude $R=15$ and $A B$ magnitude $r=15\left(\lambda_{c}=6156 \AA\right.$).
Answer:
Vega: $F=F_{0}{ }^{*} 2.512^{-15}=2.18 \times 10^{-15} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$
$F_{0}=2.177 \times 10^{-9} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ (from Table in slide 397, Lecture 09)
$A B$ (method 1):
$m=-2.5 \log F_{v}-48.6 ; \quad F_{v}\left[\operatorname{ergs~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}\right]=10^{-8} \frac{\lambda\left[\AA \AA^{2}\right.}{c\left[\mathrm{~cm} \mathrm{~s}^{-1}\right]} F_{\lambda}\left[\operatorname{ergs~s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}\right]$ (slide 386, Lec. 9)
$F_{v}=3.63 \times 10^{-26} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}$
$F_{\lambda}=2.87 \times 10^{-15} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$
$A B(\operatorname{method} 2)$:
In AB magnitudes, mag 0 has a flux of 3631 Jy (slide 386, Lecture 9)
Then $F_{v}[\mathrm{Jy}]=3631 * 2.512^{-15}=3.63 \times 10^{-3} \mathrm{Jy}$
slide 399, Lecture 9: $F_{\lambda}\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}\right]=3.00 \times 10^{-5} \lambda^{-2} F_{v}[\mathrm{Jy}]=2.87 \times 10^{-15} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$
5. What fraction of the photons in the V band of a bright star would be absorbed by the atmosphere if one were to observe the star at an airmass of 2.5 , and at the zenith (airmass = 1)?
Assume that the atmospheric extinction $\mathrm{k}(\lambda)$ in the V band is 0.15 mag airmass ${ }^{-1}$.

Answer: 13% absorbed at the zenith and 29% at the airmass of 2.5
(Lecture 11, Slide 443): $\quad m_{\text {obs }}-m_{\text {true }}=k(\lambda) X$

$$
\left(1-2.512^{-0.15^{*}}\right) * 100 \% \text { and }\left(1-2.512^{-0.15^{* 2.5}}\right) * 100 \%
$$

6. In making differential observations, explain why you should know the colours of the variable and comparison stars.

Short answer (but you had to elaborate it!): There is a colour term in the accurate formula, caused by the variation in spectral profile of the stars and the filter response over the passband (Slides 446-447, Lecture 11).

