Observational Astronomy

Problems Set 3: Solutions.

1. Which has a greater energy flux, 10 photons cm⁻² s⁻¹ at 10 Å or 10⁵ photons cm⁻² s⁻¹ at 5000 Å? Answer:

```
F_{\lambda} = N \times hv = N \times hc / \lambda : F_{10\dot{A}} = 1.99 \times 10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1} F_{5000\dot{A}} = 3.97 \times 10^{-7} \text{ erg cm}^{-2} \text{ s}^{-1}
Answer: 10<sup>5</sup> photons cm<sup>-2</sup> s<sup>-1</sup> at 5000 Å are larger (3.97×10<sup>-7</sup> > 1.99×10<sup>-8</sup> erg cm<sup>-2</sup> s<sup>-1</sup>)
```

 $Or \quad F_{5000\text{\AA}} \ / \ F_{10\text{\AA}} = N_{5000\text{\AA}} \ / \ N_{10\text{\AA}} \ \times \ 10\text{\AA} \ / \ 5000\text{\AA} = 10^5 \ / \ 10 \ \times \ 10 \ / \ 5000 = 20$

2. It is often claimed that stellar magnitude errors can be taken as fractional errors of photometric accuracy. Although this is not quite correct but close to it. Prove it.

Solution:

$$F \sim 2.512^{-m} = 10^{-0.4m}$$

From Statistics: $\sigma_q = \left| \frac{dq}{dx} \right| \sigma_x \quad \rightarrow$

$$\sigma_F = \left| \frac{dF}{dm} \right| \sigma_m = \left| \frac{2.512^{-m}}{dm} \right| \sigma_m = \ln 2.512 \cdot 2.512^{-m} \sigma_m = 0.921 F \sigma_m$$
$$\sigma_F = \left| \frac{10^{-0.4m}}{dm} \right| \sigma_m = 10^{-0.4m} \cdot \ln 10 \cdot 0.4 = 0.921 \cdot 10^{-0.4m} \sigma_m = 0.921 F \sigma_m$$

$$\frac{\sigma_F}{F} = 0.921\sigma_m$$

3. A star has a measured *I*-band magnitude of 22.0. How many photons per second are detected from this star by the William Herschel Telescope on La Palma (4.2 m diameter), assuming that the telescope and imaging optics have a throughput of 60%, the detector has a quantum efficiency of 80%, the sky has a brightness of 20 magnitudes per square arcsec, and the seeing is 1 arcsec . Estimate the exposure time required to detect the star at a signal-to-noise ratio of 20.

Solution:

How many photons per second are detected from this star by the William Herschel Telescope: From Lecture 10, slide 411: $N_{star} = \eta \epsilon_{atm} \epsilon_{tel} \epsilon_{filt} \epsilon_{win} \epsilon_{geom} \varphi \Delta \lambda A t = \eta \epsilon \varphi_{star} \Delta \lambda A t$ $\eta=0.8$ $\epsilon = \epsilon_{atm} \epsilon_{tel} \epsilon_{filt} \epsilon_{win} = 0.6$ $\Delta \lambda = 1500 \text{ Å}$ $A=\pi D^2/4=138544 \text{ cm}^2$ For simplicity, we can assume that $\epsilon_{geom} = 1.0$

or

However, the WHT telescope is of a Ritchey Chretien Cassegrain system, it has a secondary mirror with the diameter 1.0 m (e.g, https://www.ing.iac.es/PR/wht_info/whtoptics.html). Then from Lecture 10, slide 410, ϵ_{geom} =0.94 ϕ_{star} =F/hv=F λ /hc= F₀ λ /hc×2.512^{-m}=7.18×10⁻⁷ photons s⁻¹ cm⁻² Å⁻¹ Thus, N_{star} = 0.8×0.6×0.94× 7.18×10⁻⁷ × 1500×10⁻⁸ × 138544

Answer:

from the star N_{star}~67 phot/sec (~72 if ε_{geom} =1.0) from the sky N_{sky}~425 phot/sec from square arcsec (~452 if ε_{geom} =1.0)

Estimate the exposure time required to detect the star at a signal-to-noise ratio of 20. From Lecture 8, slide 360:

 $S/N = \frac{N_*t}{\sqrt{N_*t + 2N_{sky}t}} \rightarrow \frac{N_*\sqrt{t}}{\sqrt{N_* + 2N_{sky}t}} \rightarrow t=81 \text{ sec} (~76 \text{ sec if } \epsilon_{geom} =1.0)$

- 4. Calculate the flux F_{λ} of a star (in erg s⁻¹ cm⁻² Å⁻¹) having Vega magnitude *R*=15 and AB magnitude r=15 (λ_c = 6156 Å). Answer: Vega: $F=F_0^*2.512^{-15}=2.18\times10^{-15}$ erg s⁻¹ cm⁻² Å⁻¹ $F_0=2.177\times10^{-9}$ erg s⁻¹ cm⁻² Å⁻¹ (from Table in slide 397, Lecture 09) AB (method 1): $m = -2.5 \log F_{\nu} - 48.6$; F_{ν} [ergs s⁻¹ cm⁻² Hz⁻¹]= $10^{-8} \frac{\lambda [Å]^2}{c[cm s^{-1}]} F_{\lambda}$ [ergs s⁻¹ cm⁻² Å⁻¹] (slide 386, Lec. 9) $F_{\nu} = 3.63\times10^{-26}$ ergs s⁻¹ cm⁻² Hz⁻¹ $F_{\lambda} = 2.87\times10^{-15}$ erg s⁻¹ cm⁻² Å⁻¹ AB (method 2): In AB magnitudes, mag 0 has a flux of 3631 Jy (slide 386, Lecture 9) Then F_{ν} [Jy] = $3631^*2.512^{-15} = 3.63\times10^{-3}$ Jy slide 399, Lecture 9: F_{λ} [erg s⁻¹ cm⁻² Å⁻¹] = $3.00\times10^{-5} \lambda^{-2} F_{\nu}$ [Jy] = 2.87×10^{-15} erg s⁻¹ cm⁻² Å⁻¹
- 5. What fraction of the photons in the V band of a bright star would be absorbed by the atmosphere if one were to observe the star at an airmass of 2.5, and at the zenith (airmass = 1)? Assume that the atmospheric extinction $k(\lambda)$ in the V band is 0.15 mag airmass⁻¹.

```
Answer: 13% absorbed at the zenith and 29% at the airmass of 2.5
(Lecture 11, Slide 443): m_{obs} - m_{true} = k(\lambda) X
(1-2.512<sup>-0.15*1</sup>)*100% and (1-2.512<sup>-0.15*2.5</sup>)*100%
```

6. In making differential observations, explain why you should know the colours of the variable and comparison stars.

Short answer (but you had to elaborate it!): There is a colour term in the accurate formula, caused by the variation in spectral profile of the stars and the filter response over the passband (Slides 446-447, Lecture 11).