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The equations of stellar 
structure - II



Introduction
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 We have 4 differential equations of stellar structure.

 Accurate expressions for pressure, opacity and 
energy generation are extremely complicated, but we 
can find simple approximate forms.

 Equations of stellar structure too complicated to find 
exact analytical solution, hence must be solved with 
computer.

 Sometimes simplifications can be made to find 
analytical solutions that still have most of the 
physics.



To these four differential equations we need to add three equations connecting the pressure, 
the opacity, and the energy production rate of the gas with its density, temperature, and 
composition:

P = P ( ρ, T, chemical composition)
κR = κR ( ρ, T, chemical composition)
ε = ε ( ρ, T, chemical composition)

The equations of stellar structure
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 r = radius

 P = pressure at r

 m = mass of material within r

 ρ = density at r

 L = luminosity at r (rate of energy flow across 
sphere of radius r)

 T = temperature at r

 κR = Rosseland mean opacity at r

 ε = energy release per unit mass per unit time

usually called the equation of state (EOS)



The equation of state (EOS)
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 The equation of state (EOS) describes the 
microscopic properties of stellar matter for given 
density ρ,  temperature T and composition Xi . 

 It is usually expressed as the function that relates the 
pressure P to ρ, T, and mean molecular weight µ at 
any place in the star. 

 Since it is a solely an internal property of the gas, it 
can, in principle, be computed once externally, and 
used via a lookup table, i.e., 𝑃gas = P (ρ, µ, T ).



EOS in stars
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 We have seen that stellar gas is ionized plasma, and although density is so 
high that typical inter-particle spacing is of the order of an atomic radius, 
the effective particle size is more like a nuclear radius (105) times smaller. 

 Thus, interior of a star contains a mixture of ions, electrons, and radiation 
(photons). For most stars (except for very low mass stars and stellar 
remnants), the ions and electrons can be treated as an ideal gas and 
quantum effects can be neglected.

 The net pressure can be divided into three components, pressure from ions,  
pressure from electrons, and pressure from radiation.

Total pressure:   P = Pi + Pe + Prad = Pgas + Prad

However, Pgas may not obey the ideal gas law due to the effects of degeneracy.

Pi is the pressure of the ions
Pe is the electron pressure
Prad is the radiation pressure



EOS of an ideal gas
84

The equation of state for an ideal gas is:

𝑃gas = 𝑛𝑘𝑇

where n is concentration (number of particles per cm3 = nI + ne, where nI and ne are 
the number densities of ions and electrons respectively), T is the temperature, k is 
Boltzmann's constant.

But we want this equation in the form: P = P (ρ, T, chemical composition)
This can be written as:

𝑃gas =
𝜌𝑘𝑇

𝜇𝑚𝑝
=

ℜ𝜌𝑇

𝜇
where ℜ =

𝑘

𝑚𝑝
is the gas constant, and

μ = mean molecular weight, 
i.e. the average mass of particles in unit of proton mass mp.



Mean molecular weight (1)
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The mean molecular weight μ (the average mass of particles in unit 
of proton mass mp) depends upon the composition of the gas and the 
state of ionization. For example:

• Neutral hydrogen: μ = 1

• Fully ionized hydrogen: μ = 0.5

An exact solution is complex, depending on fractional ionization of all 
the elements in all parts of the star.

For simplicity, let’s now assume that all of the material in the star is 
fully ionized. This is justified as hydrogen and helium are most 
abundant and they are certainly fully ionized in stellar interiors 
(however, this assumption will break down near stellar surface).



Mean molecular weight (2)
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Denote abundances of different elements per unit mass by:
X = fraction of material by mass of H
Y = fraction of material by mass of He
Z = fraction of material by mass of all heavier elements (“metals”)

X + Y + Z = 1

Hence in 1 cm3 of stellar gas of density ρ, there is mass X(ρ of H), Y(ρ of 
He), Z (ρ of metals). In a fully ionized gas,
H gives 2 particles per mH

He gives 3/4 particles per mH (α particle, plus two e–)
Metals, average mass AmH, give ~1/2 particles per mH

(12C has nucleus plus 6e– = 7/12)
(16O has nucleus plus 8e– = 9/16)

where A is the atomic weight of the species.



Mean molecular weight (3)
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If the density of the plasma is ρ, then add up number densities of hydrogen, helium, and metal 
nuclei, plus electrons from each species:

The total number of particles per cm3 is then given by the sum: 
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Mean molecular weight (4)
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μ = 2𝑋 +
3

4
𝑌 +

1

2
𝑍

−1

This is a good approximation to μ except in cool, outer stellar regions.

For solar abundances, X = 0.73, Y = 0.25, Z = 0.02, and therefore μ = 0.60, i.e. the mean mass of 
particles in a star of solar composition is a little over half the mass of the proton.

In the central regions of the Sun, about half of the hydrogen has already been converted into 
helium by nuclear reactions, and as a result X = 0.34, Y = 0.64, and Z = 0.02, giving μ = 0.85.

When Z is negligible: Y = 1 − X; μ = 4/(3 + 5X)

The electron number density ne plays a considerable role for the properties of the gas. 
It is convenient to introduce the mean molecular weight per electron, μe, such that

𝑛𝑒 =
𝜌

𝜇𝑒𝑚𝐻
⟹ μ𝑒 ≈

2

1 + 𝑋

Prove it!



The Ionization Fraction
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 The accurate calculation of mean molecular weight μ requires knowledge of the chemical 
composition of the material and the ionization fraction. To calculate ionization fraction, one 
needs the Saha equation, which we will derive later, in the Stellar atmospheres part of this 
course :

𝑁1
+

𝑁1
=

2𝑔1
+

𝑁𝑒𝑔1

(2𝜋𝑚𝑒𝑘𝑇)3/2

ℎ3
𝑒−𝜒𝑖𝑜𝑛/𝑘𝑇

where me is the mass of the electron, ion is the ionization energy, N1
+ and N1 are the number 

density of ions and neutral atoms in their ground state, Ne is the electron number density , 
g1

+ and g1 are the statistical weight of the ground state of the ion and neutral atom.

 In general, the Saha equation can be used to compute ionization fractions over most of the 
star. It does, however, require that the gas be in the thermodynamic equilibrium. This is true 
throughout almost the whole star, as at high densities, collisions will control the level 
populations. This approximation only breaks down in the solar corona, where the densities 
become very low.

 However, the Saha equation also breaks down in the centers of stars, where high densities 
cause the ionization energies of atoms to be reduced. Indeed, if the mean distance between 
atoms is d, then there can be no bound states with radii greater than ∼d/2). In practice, the 
Saha equation begins to break down at nuclear distances of ∼10a0  (~10 Bohr radii). 

 To correct for this effect, the Saha equation is normally used until it begins to show 
decreasing ionization fractions toward the center of the star. When this happens, complete 
ionization is assumed.



Degeneracy Pressure (1)
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 An ordinary classical gas: 𝑃gas ∝ 𝑇 → 0 as 𝑇 → 0

 Simultaneously, the mean speed of particles in the gas also goes to zero: 

𝑣 = 2𝑘𝑇/𝑚

 The momenta are given by:  px=mvx ; py=mvy ; pz=mvz

 … if we plot the momenta of particles in a 3D space of px, py, and pz then as T
decreases the particles become concentrated near the origin:



Degeneracy Pressure (2)
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At low enough temperatures / high enough densities, the concentration of particles 
with similar (low) momenta would violate the Pauli exclusion principle:

No two electrons can occupy the same quantum state

i.e. have the same momentum, spin, and location.

To avoid violating the exclusion principle, electrons in a dense, cold gas must have 
larger momenta than we would predict classically. 

Since the pressure P is mean rate of transport of momentum across unit area

𝑃 =
1

3
න

0

∞

𝑣𝑝𝑛 𝑝 𝑑𝑝

… larger momentum means higher pressure. 

This quantum mechanical source of pressure is degeneracy pressure.

…where n(p)dp is the number 
of particles with momentum 
between p and p+dp



Degeneracy Pressure (3)
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This quantum mechanical source of pressure is degeneracy pressure. We will 
discuss it later.

 Non-relativistic degeneracy pressure (speeds v ≪ c) :

𝑃deg = 𝐾1𝜌5/3 = 𝐾1𝜌1+
1
𝑛

 K1 is constant

 Does not depend upon temperature for low enough T

 Depends upon composition via the relation between Ne and ρ 

 Relativistic degeneracy pressure :
𝑃deg = 𝐾2𝜌4/3

 K2 is another constant

 Equation of state for relativistic degenerate matter, which applies at high density. This is a “softer” equation of 
state, since P rises more slowly with increasing density than for the non-relativistic case.

A polytrope of 
index n=3

A polytrope of 
index n=1.5



When do the different pressures matter?
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Different types of star occupy different portions of the plane:

 Solar-type stars - ideal gas throughout

 Massive stars - radiation pressure

 White dwarfs - non-relativistic degeneracy pressure

Relativistic degeneracy implies an unstable equation of state, so no stable stars in 
that part of the plane.



Radiation Pressure
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We have already showed before that radiation pressure can be neglected for Solar-type stars:

𝑃𝑟𝑎𝑑

𝑃𝑔
= ൘

𝑎𝑇4

3

𝑘𝑇𝜌

𝜇𝑚𝑝
=

𝜇𝑎

3ℜ

𝑇3

𝜌
≈ 10−4 (for the Sun)

But becomes very important for early-type stars due to the T 4 sensitivity.

In which stars are gas and radiation pressure important?

𝑃𝑟𝑎𝑑 =
𝑎𝑇4

3

𝑃𝑔 =
ℜ𝑇𝜌

𝜇

equal when 𝑇3 =
3ℜ

𝑎𝜇
𝜌

From the virial theorem (see Lecture 4):  

ത𝑇 ∝
𝑀

𝑅


𝑃𝑟𝑎𝑑

𝑃𝑔
∝ 𝑀2

i.e. Prad becomes more significant in higher mass stars. 



Effect of radiation pressure
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For stars in which radiation pressure plays a non-negligible role we can write the 
generalized form of the equation of hydrostatic support (Lecture 3):

𝑑𝑃(𝑟)

𝑑𝑟
+ 𝑔𝜌 𝑟 = 𝑎𝜌 𝑟

Then
𝑑𝑃(𝑟)

𝑑𝑟
= −𝑔𝜌 𝑟 −

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −𝑔eff 𝑟 𝜌 𝑟

From Lecture 8:
𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜌𝜅𝑅

𝑐
𝐹 ⟹ 𝑔eff 𝑟 = 𝑔 −

𝜅𝑅

𝑐
𝐹

Consider relative contributions of radiation and (ideal) gas pressures:

𝑃𝑔 = 𝛽𝑃 =
ℜ𝑇𝜌

𝜇
, 𝑃𝑟𝑎𝑑 = 1 − 𝛽 𝑃 =

𝑎𝑇4

3

Exclude temperature: 𝑃 =
ℜ

𝜇

4 3

𝑎

1−𝛽

𝛽4

1/3

𝜌4/3 ⟹ 𝑃 = 𝐾𝜌1+
1

𝑛
A polytrope
of index n=3



Opacity (1)
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Concept of opacity was introduced when deriving the equation of radiation transport. It will be 
discussed extensively in the Stellar atmospheres part of this course. 
Opacity is the resistance of material to the flow of radiation through it. In most stellar interiors 
it is determined by all the processes which scatter and absorb photons.

Four main processes:

 Bound-bound absorption:
 is related to photon-induced transitions of a (bound) electron in atoms or ions to a higher energy state by the 

absorption of a photon. The atom is then de-excited either spontaneously or by collision with another particle, whereby 
a photon is emitted. Although this is limited to certain transition frequencies, the process can be efficient because the 
absorption lines are strongly broadened by collisions. 

 Bound-free absorption:
 which is another name for photoionization - the removal of an electron from an atom (ion) caused by the absorption of 

a photon. The inverse process is radiative recombination. 

 Free-free absorption:
 the absorption of a photon by a free electron, which makes a transition to a higher energy state by briefly interacting 

with a nucleus or an ion. The inverse process, leading to the emission of a photon, is known as bremsstrahlung. 

 [Electron] Scattering: 
 the scattering of a photon by a free electron, the photon's energy remaining unchanged (known as Thomson scattering). 



Opacity (2)
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Which process is most important in the deep stellar interiors?

 Temperatures are very high there, thus the last two processes are dominant, simply because 
the material is almost completely ionized, there are very few bound electrons. 

 Furthermore, the energy of most photons in the Planck distribution is of the order of keV, 
whereas the separation energy of atomic levels is only a few tens eV. Hence most photons 
interacting with bound electrons would set them free. Thus bound-bound (and even bound-
free)  transitions have extremely low probabilities, interactions occurring predominantly 
between photons and free electrons. 

 Thus, the most dominant process in the deep stellar interiors is electron scattering.

The opacity per unit mass of material in this case is 𝜅𝑒 =
𝑛𝑒𝜎𝑇

𝜌
, 

where σT =6.6510-25 cm2 is the Thomson cross section. The opacity is therefore:

𝜅𝑒 ≅ 0.2(1 + X) cm2g−1

The opacity resulting from electron scattering is temperature and density independent!

𝑛𝑒 =
𝜌

𝜇𝑒𝑚𝐻



Opacity (3)
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We need an expression for opacity to solve the equations of stellar structure. For 
stars in thermodynamic equilibrium with only a slow outward flow of energy, the 
opacity should have the form κ = κ (ρ, T, chemical composition)

Opacity coefficients may be calculated, taking into account all possible interactions 
between the elements and photons of different frequencies. This requires an 
enormous amount of calculation and is beyond the scope of this course. Such 
calculation are done e.g. by the OPAL opacity project at Lawrence Livermore National 
Laboratory.

When it is done, the results are usually approximated by the relatively simple 
formula:

𝜅 = 𝜅0𝜌𝛼𝑇𝛽

where α, β are slowly varying functions of density and temperature and κ 0 is a 
constant for a given chemical composition.



Opacity (4)
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Figure shows opacity as a function of
temperature for a star of given ρ (10-4 g cm-3). 
Solid curve is from detailed opacity calculations. 
Dotted lines are approximate power-law forms.

 At high T : κ is low and remains constant. 
Most atoms are fully ionized, high photon 
energy, hence free-free absorption unlikely. 
Dominant mechanism is electron scattering, 
independent of T, α =β =0:   

𝜅 = 𝜅1 = 𝜎𝑇/𝑚𝐻𝜇𝑒 (curve c)

 Opacity is low a low T, and increases towards 
higher T.  Most atoms are not ionized, few 
electrons available to scatter photons or for 
free-free absorption. Approximate analytical 
form is α =1/2 , β =4:  

𝜅 = 𝜅2𝜌0.5𝑇4 (curve a)

 At intermediate T , κ peaks, when bound-free and free-free absorption are very important, then 
decreases with T (Kramers opacity law): 

𝜅 = 𝜅3𝑇−7/2 (curve b)

 𝜅1, 𝜅2, 𝜅3 are constants for stars of given chemical composition but all depend on composition.



Summary and conclusions
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 We have learned the approximate forms of the equation of 
state and the opacity.

 Next lecture: A method of simplifying the solution of the 
stellar structure equations.

 After that we will discuss nuclear reactions and move on to 
discussing the output of full numerical solutions of the 
equations and realistic predictions of modern theory


