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Formation of a Ring. What next? 

 Angular momentum is conserved. A 
circular orbit has the least energy 
for a given angular momentum  
the dissipation will tend to produce 
a ring of gas. 

 The ring that is formed has a finite 
radial extent and rotates 
differentially. 

 Differential rotation (Shear): 

∆𝑉 =
𝑑

𝑑𝑅

𝐺𝑀

𝑅
∆𝑅 =

𝑉

2

∆𝑅

𝑅
 

 Friction causes ring to spread 
inward & outward. 

 Disk is formed! 
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Formation of an Accretion Disk 

Angular velocity in Keplerian disk 

(“differential rotation”): 

Ω𝐾 = 𝑉𝐾/𝑅 = 𝐺𝑀/𝑅3 

Increases with decreasing R! 

 

Angular momentum per unit mass 

(“specific angular momentum”): 

𝑙 𝑅 = 𝑅𝑉𝐾 = 𝑅2Ω𝐾 = 𝐺𝑀𝑅 

Decreases with decreasing R! 
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If the disk were a collection of non-interacting particles there would be no accretion. 

Gas in the disk must lose angular momentum! 



The angular momentum problem 
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How does the accreting matter lose its angular momentum? 

 Angular momentum is strictly conserved! 

 Gas must shed its angular momentum for it to be actually 

accreted. Total angular momentum lost when mass moves in 

unit time from R + dR to R: 

𝑑𝑙

𝑑𝑅
= 𝑀 ∙

𝑑(𝑅2Ω𝐾)

𝑑𝑅
 

 Suppose that there is some kind of “viscosity” in the disk  

 Different annuli of the disk rub against each other and exchange 
angular momentum 

 Results in most of the matter moving inwards and eventually accreting 

 Angular momentum carried outwards by a small amount of material 
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 To start our study of the dynamics of disks, let’s first take symmetry 

considerations and vertical integration of variables, to reduce the dimension 

of the problem and the number of independent variables: 

 We will assume that the disk is physically thin: the height ℎ of the disk in the z 

direction is much smaller than the extent of the disk in the R direction. It requires 

that radiation pressure is negligable. 

 We will assume an axisymmetric disk, which means that all quantities are 

independent of the φ coordinate. 

 The idea is to get rid of all z dependencies by integrating the equations 

through the depth of the disk, so we assumed that the flow is symmetric with 

respect to the equatorial plane (mirror symmetry about this plane).  

This procedure allows us to decouple the vertical and radial directions. 
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 This implies that rather than dealing with quantities per unit volume, we will 

deal instead with quantities per unit surface.  

 Integrating the density ρ along the z-axis we obtain the surface density, 

defined as  

Σ 𝑅 ≡  𝜌 𝑅 𝑑𝑧
+∞

−∞

=  𝜌(𝑅)𝑑𝑧 = ℎ𝜌
+𝐻 𝑅

−𝐻 𝑅

 

 

 For example, we can now calculate the amount of mass crossing radius R: 

 

𝑀 = 2𝜋𝑅 ∙ Σ ∙ 𝑉𝑅 
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 We also assume a stationary (steady) disk - the physical quantities in a disk 

do not change with time.  

 Important, stationarity does not mean that there is no flow, for instance in 

radial direction in a disk. The only requirement is that this flow proceeds in 

such a manner that the physical quantities, like the surface density Σ and 

the radial velocity VR remain unchanged. In other words: stationarity means 

that the time derivatives in the equations vanish. 

 

 The disc is assumed to be optically thick. This allows the maximum amount of 

heat to radiate away from the surface of the disk before matter falls into 

the accreting star. 

 Disk self-gravitation is negligible so material in differential or Keplerian 

rotation with angular velocity Ω
K
(R). 
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 Consider two consecutive rings on either side of some surface of constant R 
in the accretion disk and with vertical thickness h, then the outer annulus 
exerts a viscous force (μ – coefficient of dynamic viscosity): 

𝐹𝑣𝑖𝑠𝑐 = 2𝜋𝑅ℎ 𝜇 𝑅
𝑑Ω

𝑑𝑅
 

 In terms of the kinematic viscosity ν = 𝜇/𝜌 

𝐹𝑣𝑖𝑠𝑐 = 2𝜋νΣ𝑅2
𝑑Ω

𝑑𝑅
 

 

 This force is acting at a distance R  
from the centre of rotation, so it will  
exert a torque by the outer ring on  
the inner ring  

𝑄 𝑅 = 𝐹𝑣𝑖𝑠𝑐𝑅 = 2πνΣ𝑅3 
𝑑Ω

𝑑𝑅
 



Viscous accretion disks (2) 
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 The torque by the outer ring on the inner ring:        𝑄 𝑅 = 2πνΣ𝑅3 
𝑑Ω

𝑑𝑅
 

 The direction of the torque is such that the fluid at a radius less than R 

(which is rotating more rapidly) feels a backward torque and looses the 

angular momentum whereas the fluid at a radius larger than R gains the 

angular momentum. 

 To determine the radial structure of the disk we have to equate this torque 

to the rate of loss of specific angular momentum. 

 Consider a ring located between 𝑅 and (𝑅 + 𝑑𝑅).  
In unit time, a mass 𝑀  enters the ring at (𝑅 + 𝑑𝑅) with specific angular 

momentum (𝑅 + 𝑑𝑅)2 Ω(𝑅 + 𝑑𝑅)  and leaves at 𝑅 with specific angular 

momentum 𝑅2 Ω(𝑅) . 



Viscous accretion disks (3) 
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 Thus, the net angular momentum lost by the fluid per unit time in this ring is 

𝑀 𝑑(𝑅2Ω)/ 𝑑𝑅 𝑑𝑅 

 This angular momentum is lost because the torque is acting at both 𝑅 and 

(𝑅 + 𝑑𝑅) whose net effect is (𝑑𝑄/ 𝑑𝑅) 𝑑𝑅. This lead to  

 

𝑀 
𝑑(𝑅2Ω)

𝑑𝑅
𝑑𝑅 = −

𝑑

𝑑𝑅
2πνΣ𝑅3 

𝑑Ω

𝑑𝑅
𝑑𝑅 

 

 Using Ω𝐾 = 𝐺𝑀/𝑅3 and integrating, we get  

νΣ 𝑅 =
𝑀 

3π
𝑅 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑄 𝑅 = 2πνΣ𝑅3 
𝑑Ω

𝑑𝑅
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νΣ 𝑅 =
𝑀 

3π
𝑅 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Constant can be obtained from no torque boundary condition at 

inner edge of disk at 𝑅 = 𝑅∗ at which 
𝑑𝑄

𝑑𝑅 𝑅∗
= 0 

Thus, we get 

νΣ =
𝑀 

3π
1 −

𝑅∗
𝑅

1/2

  

 



Viscous accretion disks (6) 

Interacting Binary Stars 

108 

 All these rings rubbing against one another not only transfer angular 

momentum, they also make the disk hot. The power that is generated on an 

annulus takes the schematic form 

Power = (torque) ×(relative angular velocity of neighboring annuli) 

 Each ring has two plane faces of area 4pRdR, so the radiative dissipation 

from the disk per unit area is  

𝐷 𝑅 =
𝑄

4π𝑅
 
𝑑Ω

𝑑𝑅
=
1

2
νΣ 𝑅

𝑑Ω

𝑑𝑅

2

 

 

 Evaluating for circular Keplerian orbits (Ω𝐾 = 𝐺𝑀/𝑅3): 

 

𝐷 𝑅 =
9

8
νΣ

𝑄𝑀

𝑅3
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 We then have: 

𝐷 𝑅 =
3𝐺𝑀𝑀 

8π𝑅3
1 −

𝑅∗
𝑅

1/2

  

 
and hence the radiation energy flux through the disk faces is  

independent of viscosity 

 

 The total disk luminosity is 

 

𝐿𝑑𝑖𝑠𝑘 = 2 × 𝐷 𝑅 × 2𝜋𝑅𝑑𝑅 =
𝐺𝑀𝑀 

2𝑅∗

∞

𝑅∗

 

 

i.e., half the gravitational energy released in accreting the gas to radius R*. 
The remaining gravitational energy goes into rotational energy, which may 
be either dissipated in a boundary layer or sucked into a black hole. 

 

νΣ =
𝑀 

3π
1 −

𝑅∗
𝑅

1/2

  

2 sides of a disk  



Accretion Disk Temperature Structure 

 

 

 

 

 

 If the accretion disk is 

optically thick, it can be 

considered as rings or 

annuli of blackbody 

emission. 

 Dissipation rate, D(R) is 

𝐷 𝑅 =
3𝐺𝑀𝑀 

8π𝑅3
1 −

𝑅∗

𝑅

1/2
  

= blackbody flux 

= 𝜎𝑇(𝑅)4 
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Accretion Disk Temperature Structure 
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 Thus temperature as a function of radius T(R): 
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 Then for R ≫ R* 
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Accretion Disk Temperature Structure 
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 In dwarf novae in outburst and long-period novalikes, this 

simple 𝑅−3/4 radial temperature profile is indeed observed.  

 

 In quiescent dwarf novae a much flatter profile is observed. 

This is thought to be because the disk does not achieve a 

steady state in quiescence. 

 

 

 



Accretion Disk Spectrum 
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 Integrating the blackbody spectrum over radius gives the 

predicted spectrum of an optically thick, geometrically thin, 

steady-state accretion disk 

𝑆𝜆 ∝  𝐵𝜆 𝑇 𝑅 2𝜋𝑅𝑑𝑅
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

 

 

 

Contributions of BB annuli to the 

total intensity distribution of an 

accretion disk. 
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 The continuum spectrum 𝑆𝜈 (in frequency units) of a disk with 

different ratios Rout/Rin: 

 

The spectrum can be divided into three 

regions: 

From the outer edge of the disc we will see 

the Rayleigh-Jeans tail of Touter 

𝑆𝜈 ∝ 𝜈2 
From the inner edge, an exponential cut-off 

𝑆𝜈 ∝ 𝑒−ℎ𝜈/𝑘𝑇𝑖𝑛𝑛𝑒𝑟 
And the flat part which is sometimes 

considered a characteristic disc spectrum: 

𝑆𝜈 ∝ 𝜈
1
3  



Accretion Disk Spectrum 
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The flat part is considered a 

characteristic disc spectrum: 

𝑆𝜈 ∝ 𝜈
1
3  

 

However! This part of the 

curve may be quite short 

and the spectrum is not very 

different from a blackbody, 

unless Tout is appreciably 

smaller than Tin. 

𝑆𝜆 ∝ 𝜆−
7
3  

𝑆𝜆 ∝ 𝜆−4 


