Gamma-Ray Binaries

Miikka Siitonen

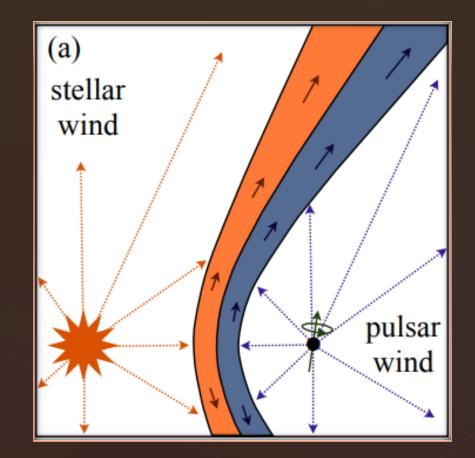
Overall information

HE, 0.1–100 GeV V

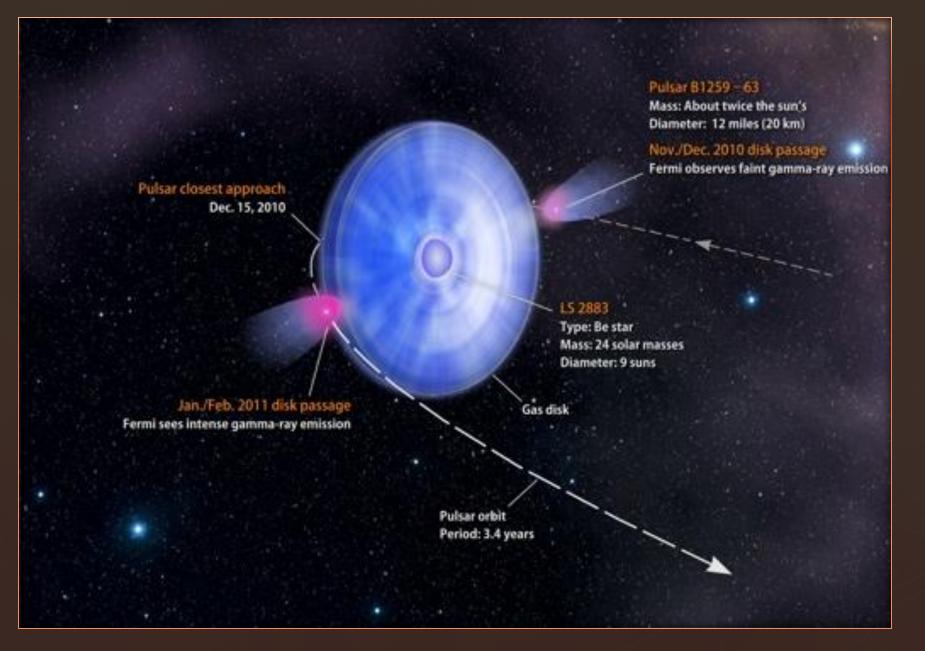
VHE: >100 GeV

- Binary systems that emit gamma-rays
 - Through outbursts (novae)
 - More continuously (Pulsar slowdown)
- Mid-2000 New instruments
 - Fermi LAT (GeV) Satellite
 - H.E.S.S High Energy Spectroscopic System
- In Milky Way: ~101 +89/-52 objects [Estimated]

Name	Binary components		Porb (d)	HE	VHE	Refs. ^a
(high-mass) gamma-ray	binaries					
PSR B1259-63	pulsar	Be	1236.7	1	~	[12,13]
HESS 10632+057	?	Be	315		~	[14,15]
LS I +61°303	7	Be	26.5	1	~	[16,17]
1FGL [1018.6-5856	?	0	16.6	~	~	[18,19]
LS 5039	?	0	3.9	~	~	[20,21]
(low-mass) gamma-ray l	binaries ^b					
XSS [12270-4859	pulsar	red dwarf	0.29	~		[22,23]
PSR [1023+0038	pulsar	red dwarf	0.20	~		[24]
2FGL J0523.3-2530	?	red dwarf	0.69	~		[25,26]
PSR B1957+20	pulsar	brown dwarf	0.38	~		[27]
PSR J0610-2100	pulsar	brown dwarf	0.29	~		[28]
PSR J1311-3430	pulsar	brown dwarf	0.065	~		[29,30]
microquasars (X-ray bina	aries)					
Cyg X-3	black hole?	Wolf-Rayet	0.20	~		[31,32]
Cyg X-1	black hole	0	5.60	~	?	[33,34]
novae						
V407 Cyg	white dwarf	red giant	14000?	~		[35,36]
V1324 Sco	white dwarf	red dwarf	0.07?	~		[37]
V959 Mon	white dwarf	red dwarf	0.30	~		[37]
V339 Del	white dwarf	red dwarf	0.137	~		[37]
V1369 Cen	white dwarf	red dwarf	?	~		[38]
colliding wind binary						
Eta Car	LBV	O/WR?	2014	1		[39,40]


^a I only give one or two recent references as entry points to the HE/VHE literature.

^b Not including another >50 Fermi-LAT pulsars in binaries.

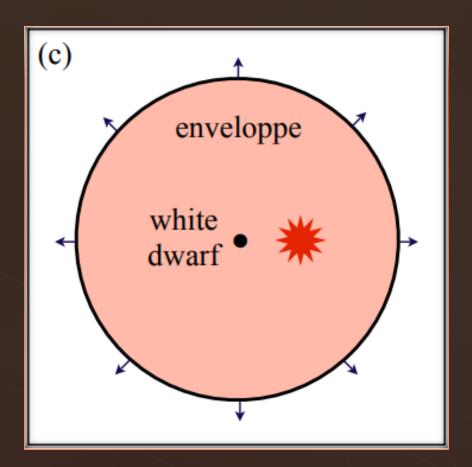

High-mass gamma-ray binaries

Powered by pulsar rotation

- Pulsar's slow down (~8*10^35 erg/s)
- Powers the relativistic wind and radiation
 - Wind produces a shock front in binary system's case
 - This in turn radiates gamma-rays with the wind of secondary (Inverse Compton)
- Charged particles + magnetic field in poles
- Synchrotronradiation
- With Be-star [Balmer emission lines with usually Btype stars]
 - High rotation around axis -> Forms a material disk
 - Pulsar moves through -> Produces gamma-rays (not pulsed)

Pulsar + BE-star

Low-mass gamma-ray binaries


- Gamma-rays dominate spectral energy distribution (XSS J12270–4859)
- [2014] 55/161 out of ANY gamma-ray pulsars are binary [Fermi-LAT]
 - Millisecond pulsars
 - Spun back by the matter flow from donor star
- Inverse Compton gamma-ray emission from active accretion disk when hit by the pulsar wind

Microquasars

- Like Active Galactic Nuclei sized down
- Synchrotron emission from jets -> Evidence of TeV scale energies
- Massive donor -> Accretion disk + corona -> Majorly x-ray seen
- ~ 1-10 % of all high energy radiation is in gamma-rays
- Only seen when radio emission also seen (jets)
 - Binary's spectral state
 - Originate farther from the jet base -> No pair production et cetera

Novae

- Lower energy (1-10 MeV) gamma-rays expected
- 100 MeV gamma-rays also detected
 - High velocity ejecta -> Shock front outside the binary separation
 - Interaction with Interstellar matter -> Radiation
 - Also affected by the companion star
- Seeing the gamma-rays:
 - Gives ways to study shock fronts/sweeping of matter outside of supernovae

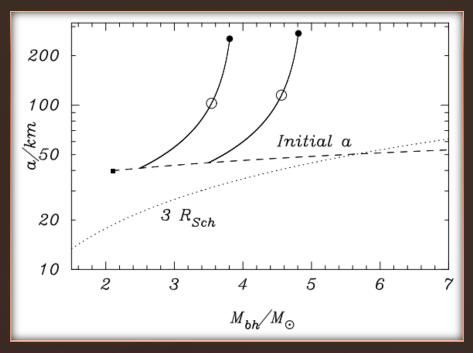
Wind driven gamma-ray binaries

• Not always present

- Eta Car -> 0.2% of winds energy within gamma-rays
- Similar binaries do not seem to show any caused by winds
- Small shock front/radiative losses
- Could be used to estimate:
 - Maximum accretion energy
 - Magnetic fields
 - How much wind energy -> Non-thermal energy in shocks

Conclusion on former slides

- Gamma-ray binaries combine multiple groups of highenergy astrophysics
 - Magnetized outflows
 - Shock-fronts and winds
 - Novae and conceptual similarities to supernovae
- Mainly in HE-range
 - Cherenkov Telescope Array for VHE
 - In LE-range noise by the hot coronae/radioactive decay


Theoretical example from 1998 (NS + BH)

- Standard system formed -> Matter exchange -> Supernova
 - Close binary of neutron star and black hole forms
 - Accretion rate highly super-Eddington (1 Sun mass/year)
- Gravitational waves -> Separation shrinks -> Neutron star fills Roche lobe
 - Mass transfer driven by gravitational waves
 - Stops the collision
 - Neutrons travel rapidly no decay, no mass loss
 - Accretion flow does not form a disk (angular momentum to orbits)
- Assuming that:
 - Roche lobe stays filled | | No rotation for black hole nor neutron star
 - The required mass transfer-rate is then:
 - The constant kappa = $4.1 \times 10^{17} \text{ cm} \times g^{(1/3)}$

$$\dot{m} = \frac{32G^3}{5\kappa^4 c^5} \frac{m^{16/3}}{q^{2/3}(q+1)^{1/3}(q-2/3)}.$$

Continuing

- Right mass proportions: 1.4 and 2.1 solar masses (donor/primary)
- Separation a > 3*Schwarzschild radius (assume rotation, so laxed)
- Disk may form when separation has increased
- Gravitational energy of matter falling in not enough for gammarays
 - Assume rotation (Kerr blackhole) + strong magnetic field
 - Magnetic field locked into disk -> Rotation energy taken from the black hole
 - Radiation emerges from the black hole's rotation axis
- Absorbed if baryons present
 - Before accretion disk very little
 - Tidal heating of neutron star (forced to corotate) -> Wind which diminishes in time

$$L \approx 10^{50} \left(\frac{\mu M}{3 M_{\odot}}\right)^2 \left(\frac{B}{10^{15} \text{ G}}\right)^2 \text{ ergs s}^{-1}.$$

Energy of radiation taken from rotational energy of BH

In conclusion

- Short bursts
 - Merging of two neutron stars
 - Unstable mass transfer between neutron star and black hole
 - 1 out of 10-20 bursts are short
- During accretion like x-ray binaries (former classes)
- Neutron star ends its life when its mass drops to a lower limit
 - $R \sim 33$ km, M=0.1 solar masses, $L \sim 10^{(50)}$ ergs/s, L_neutrino ~ $10^{(51)}$ ergs/s
 - Enriches space with elements (Thorium)
- Whole process is quick

References

- Dubus, Guillaume et al. "Sizing up the population of gamma-ray binaries" in Astronomy & Astrophysics (608, A59) 2017
- Guillaume Dubus "Gamma-ray emission from binaries in context" in Comptes Rendus Physique (V 16, Issues 6-7, p. 661-673) 2015
- Simon F. Portegies Zwart "Gamma-Ray Binaries: Stable Mass Transfer from a Neutron Star to a Black Hole" in The Astrophysical Journal (503:L53-L56) 1998
- https://fermi.gsfc.nasa.gov/science/eteu/binaries/