ALGOL-TYPE BINARY SYSTEMS

Basics

- Algol type binary is
 - 1. Semi-detached
 - 2. Secondary fills its Roche lobe but primary does not
 - 3. Primary is still in MS and is more massive than secondary
 - 4. Secondary is larger, fainter and cooler than primary

- Typical mass transfer rate between 10⁻
 7 10⁻-11 solar masses / yr
- Mass transfer rate depends on
 - How fast the core of the secondary subgiant contracts (how fast the secondary can expand)
 - How fast angular momentum can be removed from the system

- Masses of primaries typically some solar masses, secondaries less massive.
- Radii can be quite similar; however, secondaries are statistically larger.
- Data for plots from Budding et al. (2004)

Periods and accretion mechanisms

P > 4.5 d

- Size of the system significantly larger than primary radius
 - Accretion disks may occur

 Transient accretion disks may occur

P < 2.5 d

- Stream hits the surface of the star
 - More complicated accretion structures

- Minimum accretion disk radius from
 R_{min} = 0.0488 a * q ^ (-0.464)
 - If primary radius larger than this, the accretion stream hits the surface of the star

Classical disk

- Emission strong compared to combined flux of the system
- Lines broadened by Keplerian motion
- Permanent structures

Transient disk

- Emission weak compared to combined flux of the system
- Lines broadened by supersonic turbulence
- Highly variable may disappear in less than one orbital period

Disk temperatures

- Even for quite rapid mass transfer, the maximum disk temperature is quite low
 - no outbursts

$$T_* = \left(\frac{3GM\dot{M}}{8\pi R_*^3\sigma}\right)^{1/4}$$

$$T_{max} = 0.488 T_*$$

Disk Iuminosities

- Few solar luminosities
- Can be hard to detect, if stars are more luminous

Maximum disk radii

• Maximum disk sizes are some tens of solar radii.

Albright & Richards 1996

Evolution of Algols

- Originally more massive star (secondary) evolves faster
 - Moves away from the main sequence before the less massive primary
- Secondary then expands to fill its Roche lobe and begins transferring mass to the primary
- Post-Algol stage: Secondary evolves into a compact object and starts accreting mass from the primary.
- Evolution is non-conservative (massloss plays significant role in the evolutio n)

Mass loss

- Some mechanism of mass loss is needed to explain the loss of angular momentum needed for the evolution of observed Algols
 - Hotspot mechanism most promising (van Rensbergen et al. 2011)
 - Other possible methods include bipolar jets, enhanced winds, and losses through L3 point (*R*. Deschamps et al. 2015)
- However, direct detection has not been made

Thank you for listening!