
VI T A L Y  N EU ST R O EV  
 

A S T R O N O M Y  R E S E A R C H  U N I T  

U N I V E R S I T Y  O F  O U L U  

2 0 1 9  

Stellar Atmospheres  
Lecture 6 



M A X W E L L I A N  V E L O C I T Y  D I S T R I B U T I O N  

B O L T Z M A N N  E Q U A T I O N  

S A H A  E Q U A T I O N  

Local Thermodynamic Equilibrium 
(LTE) 



Thermodynamic Equilibrium (TE)  
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· All particles have Maxwellian  distribution in velocities (with the same 
temperature T). 

· Atom populations follow Boltzmann law (same T). 

· Ionization is described by Saha formula (same T). 

· Radiation intensity is given by the Planck function (same T). 

· The principle of detailed equilibrium is valid (the number of direct 
processes = number of inverse processes). 

 

In Local thermodynamic equilibrium (LTE ) ,  
1-3 are applied locally . 

The radiation spectrum can be very far from Planck function.  



Local Thermodynamic Equilibrium  
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· Interaction of radiation and matter is the most important 
physical process in stellar atmospheres. 

·To find ╘ⱦ we need to know and el (or kl  and jl) ï absorption 
and emission coefficients. 

·To find and el, density ȍ, temperature T, and chemical 
composition X are not enough. We need to know distributions of 
atoms over levels and ionization states, which depend on 
radiation ╘ⱦ. 

· In LTE, ȍ, T, and X fully determine and el. 



LTE  
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In the study of stellar atmospheres, the assumption of Local 
Thermodynamic Equilibrium (LTE) is described by: 

1. Electron and ion velocity distributions are Maxwellian. 

2. Excitation equilibrium is given by Boltzmann equation. 

3. Ionization equilibrium is given by Saha equation  
(introduced today).  

4. The source function is given by the Planck function 
 

                                                  i.e. +ÉÒÃÈÏÆÆȭÓ law Ὓ Ὅ ὄ Ὕ Ὦ ‖ὄ Ὕ 



Is LTE a valid assumption?  
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·For LTE to be valid, the photon and particle mean free paths 
need to be much smaller than the length scale over which 
these temperature changes significantly.  

·Radiation cannot play a role in defining atom populations 
and ionization state. Collisions should dominate.  

·Generally, when collisional processes dominate over radiative 
processes in the excitation and ionization of atoms, the state 
of the gas is close to LTE.  

·Consequently, LTE is a good assumption in stellar 
interiors, but may break down in the atmosphere . If 
LTE is no longer valid, all processes need to be calculated in 
detail via non -LTE . This is much more complicated, but 
needs to be considered in some cases (see later in course). 

 



Mean Free Path  
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· In the Sun, the characteristic distance over which the temperature 
varies (the temperature scale height) is ~500km. How does this 
scale compare with the average distance travelled by an atom 
before hitting another atom?  

·The density of the Solar photosphere is r=2.5x10-7 g/cm3 so the 
number of H atoms/cm3 is n(H)=r/ mH=1.5x1017 cm3 where mH is 
the mass of the H atom. Two atoms will collide if their centres pass 
within a radius of 2 Bohr radii (2ao) of each other. The collision 
cross-section of the atom is s=p(2ao)

2 =3.5x10-16 cm2.  

·The mean free path between collisions is 1/s x 1/n(H)=0.02 cm. 
i.e. atoms are confined within a limited volume of space in the 
photosphere at effectively fixed temperature (relative to the 
temperature scale height). 

· In contrast, since the photosphere is the layer visible from Earth, 
photons must be able to escape freely into space, after ~1021 
scatterings and re-emissions (thousands years!) from the centre.  

·In the upper layers, radiation dominates over collisions Ą  
out of LTE 

 
 

 



Maxwellian  velocity distribution  

Gas pressure is produced by the motions of the gas  
particles.  The velocities of particles are distributed  
in a Maxwellian  distribution (also called   
the MaxwellïBoltzmann distribution).  

 

 

 

Because the particles produce Doppler shifts, the line of sight velocities 
have a distribution that is an important special case for spectroscopy: 

 

 

 

where vR is the radial (line of sight) velocity component.  



Maxwellian  velocity distribution  

The maximum of the 
speed distribution 
occurs at v1  (the most 
probable velocity):  
 
 
 
 
 
 

The average velocity, 
v2, is 
 
 
 
 
The root mean square 
velocity, v3, is 



Boltzmann equation  

 
 
 
 
 
 
For excited levels u  and l  of e.g. atomic hydrogen, the Bolzmann equation relates 
their population (occupation) numbers as follows: 
 

╝◊
╝■

▌◊
▌■
▄ ╔◊ ╔■Ⱦ▓╣ 

 
where cul = Eu-El  is the energy difference between the levels, gu & gl are their 
statistical weights (see next slide), k=8.6174x10-5 eV/K is the Boltzmann constant.  
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)Î ÔÈÅ ȰÇÒÏÕÎÄ ÓÔÁÔÅȱ 
Î ρ  ÏÒ ȰÆÉÒÓÔ ÅØÃÉÔÅÄ 
ÓÔÁÔÅȱ Î ς  ÏÆ ( 
more than one 
quantum state may 
have the same energy.  
 
The number of  these 
for orbital n is the 
statistical weight, gn, 
(also known as the 
degeneracy).  

Boltzmann equation may also be written as: 

ÌÏÇ
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… Ὡὠ Q=5040/ T 



Hydrogen  
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For H, orbital n has a statistical weight of 
gn=2n 2 ɀ the various permutations for 
n=1 and n=2 are listed here, with 
statistical weights g1=2 and g2=8, 
respectively. 
 
l=0 ..n-1 azimuthal quantum 
number 
ml=magnetic quantum number with -
l ml  l 
ms ÅÌÅÃÔÒÏÎ ȰÓÐÉÎȱ angular momentum 

1/2  

 

Transition energy between levels u and l: 

… ὅ
ρ

ὰ

ρ

ό
 

where C=cion= -13.6 eV 
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An exceptionally high T is required for a significant number of H atoms to have 
electrons in their 1st excited states. The Balmer lines (involving an upward transition 
from n=2 orbital) reach a peak strength at spectral class A (å10000K)  

 

 

 

 

 

 

 

 

 

 

 

so why do the Balmer lines diminish in strength at higher temperatures?  

We need Saha equation to answer this question. 
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Balmer  lines  
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Balmer  lines  
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We can extend the Boltzmann formula to states with positive energies  
(the upper state is now an ion plus free electron, with energy cion+1/2mev

2).  
 

Let us consider the simplest case of the lower and upper states being the 
ground states of the neutral atom (e.g. H0) and singly ionized ion (H+ ). 

 
Ὠὔ ὺ

ὔ

ὫὫ

Ὣ
Ὡ Ⱦ  

 

Here me is the mass of the electron, cion  is the ionization energy,  
dN+

1(v) is the number of ions in their ground state with the free electron 
having a velocity in the interval (v, v+dv ), g1

+ and ge are the statistical 
weight of the ground state of the ion & the electron. 
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Derivation of the Saha  Equation  
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ionization limit  

The (differential) statistical weight of the electron, ge, i.e. the number of available 
states in interval (v,v+dv ) is  

Ὣ
ρ

ὔ

ψ“ά ὺὨὺ

Ὤ
 

 
 
)ÎÓÅÒÔÉÎÇ ÔÈÉÓ ÉÎÔÏ "ÏÌÔÚÍÁÎÎȭÓ ÅÑÕÁÔÉÏÎ reveals 
 

Ὠὔ ὺ

ὔ

Ὣ

ὔὫ

ψ“ά

Ὤ
Ὡ Ⱦ ὺὨὺ 

 



17 

 
3ÉÎÃÅ ×Å ÄÏÎȭÔ ÃÁÒÅ ÁÂÏÕÔ v, we can integrate over all velocities, substituting 
x= vÕ(2mekT) and using  

ὼὩ Ὠὼ
“

τ
 

 
 
Finally, we arrive at the Saha equation (Meghnad Saha 1920): 
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This relates the ground state populations of the atom and ion. To derive the 
ratio of the total number of ions (N+ ) to the total number of atoms (N0) we 
can use the conventional Boltzmann formula for each level n of the atom and 
ion, Nn/N 1 and Nn

+ /N 1
+ i.e.. 
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Partition function  
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If N0 is the sum of all neutral particles in their different quantum states:. 
 
 

 
We find: 
 
 
 
Where we have introduced u0 , the partition function  of the atom. This is the 
weighted sum of the number of ways it can arrange its electrons with the 
same energy - e.g. all H is in the ground state for the Solar case, so u0º2 (the 
ground state statistical weight). Similarly for the ion,  
 

                                    ό Ὕ Ὣ Ὣ Ὡ Ⱦ  

 
For H+ , u+=1, since no electrons left.  
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Partition function (2)  
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If we multiply N1
+ /N 1

0 from earlier by N+ /N 1
+  and N1

0/N 0 we again obtain  
the Saha equation : 

 
ὔ ὔ

ὔ

ςό

ό

ς“άὯὝȾ

Ὤ
Ὡ Ⱦ τȢψσρπ

ό

ό
ὝȾὩ Ⱦ  

 

In logarithmic form Saha equation can be written as: 
 

ÌÏÇ
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where cion is measured in eV, Q=5040/T and the electron pressure Pe  is related 
to the electron density via the ideal gas law (Pe= NekT). In stellar atmospheres, Pe 
lies in the range 1 dyn/cm 2 (cool stars) to 1000 dyn/cm 2 (hot stars).  

High temperature favours ionization, high pressure favours recombination.  
 

Note that 1dyn/cm 2=0.1N/m 2 (SI units), so for SI calculations the final constant is -1.48 instead of -0.48 
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Partition functions ( Gray  App D2)  
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Q=5040/ T 

20 

20 
20 
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Partition functions ( Gray , old edition)  

Q=5040/ T 



· We can use Saha to study the degree of ionization of H in general in stellar 
photospheres. The fraction of ionized hydrogen to the total is defined below. We 
find that H switches from mostly neutral below 7000K to mostly ionized above 
11000K for typical Ne.  This allows us to understand why hydrogen lines are 
strongest in A-type stars, with temperatures of 7500-10000K. 

 

Degree of ionization of H in stars  
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ὔ
ςȢτ ρπ  ὝȾὩ Ⱦ  

Using 1eV per particle, the hydrogen is 
heated from 0 to 104 K. Supplying 13.6 eV 
more, the temperature increases only up to 
2x 104 K. Ionization is an extremely energy 
consuming process. Ionization happens 
within a very small temperature interval. 


