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Solution to planeparallel transfer equation at
surface explains limb darkening inSun

Eddington-Barbier relation
Greyatmosphere



Formal Solution to RTE

e The full intensity at the position ¢, on the line of sight through the photosphere is
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* Animportant special case occurs at the stellar surface. In this case
I"(0)=0
Ij“t(()):f S e h<fsecdr
0

where we assumedthat the external radiation is completely negligible compared to
the star’s own radiation.




Solar limb darkening




A The emergent flux from the stellar surface igp times the Source
function at an optical depth of2/3

F (0) =05, (¢, =2/3)

A Assuming agrey atmosphere, we found thatthe* s ur f a c ¢
star, which has temperatureT 4 (by definition) is not at the
very top of the atmosphere(where t =0), but lies deeper down,
att=2/3.



Radiative Equilibrium

O

GREY ATMOSPHERE
THERMAL (RADIATIVE) EQUILIBRIUM
THE DEPTH DEPENDENCE OF THE SOURCE FUNCTION
EDDINGTON APPROXIMATION
TEMPERATURE STRUCTURE OF THE GREY ATMOSPHERE




In the previous lecture, weassumed that the opacity can be
iIndependent ofl , i.e.k, =k. We call such a (hypothetical)
atmosphere agrey atmosphere .

In the theory of stellar atmospheres, much of the technical
effort goes into iteration schemes using equations of radiative
equilibrium (which we will discuss today) to find the source

function §.

Often, a starting point for such iterations is thegrey case.



In stellar atmospheresradiation dominates transfer of energy so we can
discuss (three) conditions of radiative equilibrium, which can be used to
derive the temperature structure in the photosphere.

Theradiation we see from the Sun comes from a layer of geometrical
height of a few hundred km

In a column of100 km height and1 cn¥ cross-section there are 16*
particles (sincer~10%/cm3in Sun), each of which has a thermal energy
of 3k 772 (10-*? erg). The total thermal energy of this column is therefore
1012 erg/cm?. The observed radiative energy loss (per cfnof the solar
surface isF.=6.3x10% erg/cm?/s.

If the Sun shines at a constant rate, the energy content of the solar
photosphere can only last for 15 seconds without being replenished from
below. Exactly the same amount of energy has to be supplied or else the
photosphere would quickly change temperature



Sincethis doesnot happen,dA d¢=0 or dAd x=0 or dAd ¢ =0, i.e.the total flux
must be constant at all depths of the photosphergconservation of energy z
the 1stequation of radiative equilibrium

10 3C) o= Y& nn

Whenall the energy is carried by radiation, wehave
qw O(f ). "Om

Although the shapeof /4 canbe expected to change very significantly with depth,
its integral remains invariant.

If other sources of energy transport aresignificant, then a more general
expression of fluxconstancy must be applied:

3 (0) O(ft )L Om

F (x) is, for example the convectiveflux



We may integrate the planeparallel transfer equation over solid anglew.
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Finally, assuming§ to be isotropic we obtain,
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In the grey case, for which the opacity is independent of wavelength
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@EF([)_-S([)-FJ([) 0

SincedAd £ =0, the Sourcefunction must be equalthe mean intensity J.

If the atmosphere isnot grey, which is thesituation for most stars,] A0 O
Incorporate the opacitykinto the RHS, and integrating ovewavelength

4pdt(ﬁ:(z‘ A= {k,S - k,3,)d/ =0

SincedF/ dt =0, we get theradiative balance equation (energy conservatioh

i, Sd/ = 3,0/

This is the second equation of radiative equilibriumand can be understood
asthe total energy absorbed(RHS) must equal theiotal energy re-emitted
(LHS) if no heating or cooling is taking place.




The third radiative equilibrium condition is obtained by multiplying the
transfer equation by cogy and integrating over solid angle and then
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The third radiative equilibrium condition:



All the three radiative equilibrium conditions are not independent
S that is a solution of one will be the solution of all three.

The flux constantHQO) is often expressed in terms of an effective
temperature '@m) ,°Y 8

When model photospheres are constructed usinffux constancyas
a condition to be fulfilled by the model, the effectivéemperature
becomesone of the fundamental parameters characterizing the
model.

In real stars, energy is created or lost from the radiation field
through e.g. convection, magnetic fields, plua supernovae
atmospheres energyconservation is not valid (radioactive decay of
Ni to Fe), so the energy constraints are more complicated in reality.



In a grey atmosphere, with K(z) = ﬁ(,d/ , the3' equation implies:
dK(#) _ F(?)

a new unknown function K{(t)

d¢ 4
We can differentiate this, and insert our earlier result: P
2
d ng‘): 1 dF(t):J(z‘)-S(z‘):O [1]
d¢ 4p dt
Integration of the equation with respect tot gives K{t)=c ,t+c, 2]

where dK/d t=c,= H4p

For a givenF, we now havetwo equations, [1] and [2],to determine the
three unknowns: J Sand K(or c¢,). We need an additional relation between

two of these variables inorder to determine all three.



Previously we have seen thafor the determination of the fluxthe anisotropy inthe
radiation field is very important because in the flux integral thenward -going
intensities are subtracted from the outwardgoing ones, dudo the factor cosg.

But for K a small anisotropy isunimportant because the intensities are multiplied
by the factorcos’q, whichdoes not change sign for inward and outward radiation.

In order to evaluate K'or ¢, we canapproximate the radiation field by anisotropic
radiation field of the mean intensityJ /= Jby definition). From the definition of
K we obtain .
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or after division by 4p, 1
K, () :éJ/(t/)

This approximation for the K function is known as
the Eddington approximation.



Inserting the Eddingtonapproximation into the aboveequation dK(©) = F()

we find d¢ 4p
di() _ 3
dK(¢) _1d3() _F() & ) _ F ()
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Sincethe mean intensity Jequals the source functionSin a grey atmosphere,
integrating the latter result we obtain
3
S(t)=—1tF(0)+C=J(t)
4p

From the conditions of radiative equilibrium, we finally obtained the law for the
depth dependence of the source functioffor a grey atmosphere assuming the
Eddington approximation). We can evaluat€Cusing boundary condition for the
known emergingflux (there is no flux going into thestar), i.e./(0,9)= /=0 for
p/2< g<p plus we assume the outward intensity does not depend upoq ie.
1(0,9)=I * for O<g< p/2,



Boundary condition: there is no flux going into thestar,

l.e. /(0,9)= F=0 for p/2< g<p

We also assume thathe outward intensity does not depend upong,
ie. /(0,9)= /* = constfor O<qg<p/2

) 1 1
ltgives JO)=—1"=—F(0
g (0) 2 2 (0)

S(z‘):4iz‘F(O)+C:J(z‘)é

Hence C={0)= AO0)/2 p so: / P

To find the depth dependence of/, we also need to assume LTE.



Temperature structure of the grey

atmosphere
In LTE, the source function is the Planck functior§(t)= B(t)=s 74/ p

S _4,.._ 3 2
B(l‘)—;T (l‘)—@(z‘ +§)F(0)

Recallthat F(0)=s 74 by definition, so

1, 3. .2 ., Ay — D yp L 2\
—sTHt)=—( +3)sT; oOf T ()=—( +=)T .
ST =+ ST T =L+ )T
We derived the temperature dependence on optical depth

Note 7 (7=2/3)= T, as we obtainedearlier, and 74(¢=0)= T7*/ 2

______________________

A complete solution of the grey case, using accurate boundary conditions, without
Eddington approximation, leadsto a solution only slightly different from this, usually
expressed as

T =2 AT

Here g(t) is a slowly varying function (Hopffunction), with 5 pj Vo 1@ x &t t=0
to g=0.710 at =1,




Grey Temperature Structure

Comparison between7(t) in

the Solar atmosphere using the
. simplifying Eddington
assumption(solid) versus the
exact grey casdédashed) using
the Hopf function, q(t)

q(¢)° 0.710- 0.13% %

6000
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How realistic is this?

* How good anapproximate is
the greyatmosphere? Nexwe
must look atthe frequency
dependenceof the sources of
opacity.

* Thegrey temperature
distribution is shown here
versus the observed Solar
temperature distribution as a
function of optical deptht at
5000A (D.Gray, Table 9.2)

» The poor match is because the
opacity iswavelength
dependent, as we shall see
next lecture.
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Summary

e Three equations of radiative equilibrium can bederived:
(a) constant flux with depth;
(b) energy absorbed equals energy emitted,
(c) the K-integral is linear int.

» From these, thegrey temperature distribution 7{t) may be
derived, assuming:

(a) the Eddington approximation and
(b) LTE, in reasonable agreement with the exact case

* OnFriday, wewill discuss LTE in more detail.




