The periodogram is an estimate of the spectral
density of a signal. The term was coined by Arthur
Schuster in 1898 (the Schuster Periodogram).

A Power Density Spectrum is computed as the
squared Fourier amplitudes with some

normalization:
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We will adopt the Leahy et al. (1983) normalization:
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N
la;|* j=0,..,—; where N.,, = N =z X, = da

N, . — dispersion of the total number of counts in the
time series. For the Poisson process, the variance

(square of the standard deviation) is equal to the total
number of counts.



Variance in the real time series x;:
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Parseval’s theorem
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variance is sum of powers!

The dimension of P; is the same as x; and a;: [P;] = [a;] = [x;]



The Leahy normalization is chosen such that if the x; are Poisson

distributed, then the P; exactly follow the chi-squared distribution with
2 dof, y2.

Properties of this distribution:
The mean power is 2;
the standard deviation is 2!

So, the power spectrum is very noisy. This does not improve with:
longer observation — you just get more powers
broader time bins — you just get a lower vy,
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» Flux measurements are always accompanied by noise.

» The light curve can be divided into its independent components:
the deterministic signal S and the noise N. For an individual time
bin, the total number of counts is composed of the sum of the
signal and the noise, i.e., x;. = s;. + n,..

» Examples of deterministic signals:

a non-periodic deterministic variation, such as a nova light curve;
A periodic variation, such as an eclipsing binary or a RR Lyr light curve;
a multiply periodic variation, such as a spectroscopic triple system;

a modulated periodic variation where either the amplitude, frequency, or
phase may vary with time - for example a pulsating system in a binary
orbit.



'Noise' (= random aka stochastic processes) in the light curve
produces peaks and broad components in the power spectrum.

Examples of noise:
Counting statistics noise (Poisson noise) -> white noise;

Poisson noise modified by instrumental effects (e.g. dead-time) and
other instrumental noise;

Noise that is (stochastic) intrinsic source variability: QPO, band limited
noise, red noise, etc.

All these can occur at the same time, possibly together with
deterministic signals.

They can be the background against which you are trying to
detect something else

Or they can be the signal you are trying to detect.



Statistics of Power Spectra

FOWER SPECSTRUM TME SERIES

UL e R e

vand voml v vomd e sl
COUNT ReTE

FOWER Law MOISE
L

T T T TR T
COUNT RRTE

FLAT TOF MGIZE

P

ol el v e
COUNT RaTE

r
e
r
F
F
F
E
r
E
£

FEAKEDR MOISE
1 1

voomd vomd vl viwd vl o0
COUNT RATE

i
10 10D 02z 0.4 0.6 08
FREQUENCT (Hz) TIVE (s}




Main types of signals
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Fractional rms (root-mean-square) amplitude of a signal in a
time series x;.:

_\/%VClr(xk) N [Ny, & 1
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r is dimensionless and often expressed in %
(percentage rms variation).



“rms normalized” power density: q(v;) = TP;/N,,
physical unit of q(v;) is (rms/mean)>/Hz

"Source” fractional rms amplitude: If the x; are the sum of source and
background: x; = b, + s, then the rms amplitude as a fraction of just the s,:

B+S

fs =175

where B and S are sums of the b, and s;, so B+S =%, x,= N,

”Source rms normalized” power density ( normalization):
B+5\? B+S

qSEq(T) =P~

the same unit as g: (rms/mean)?/Hz

Requires a model or a measurement of the background count rate.



» Much analysis involves “coherent” signals, i.e.
periodic signals whose phase is constant over the
relevant duration

Q =v/Av >> 1000

» Examples:
Pulses from rotating pulsars;
Orbital modulation or eclipses;
Precession periods.



How to determine the significance of peaks found in power spectra?
How big must a power be to constitute a significant excess over the
noise?

Let’s define ¢ as the probability that a noise fluctuation exceeds P4,
The (1- €) confidence detection level P,,, is a level that has a false alarm
probability of . If there is just noise, Prob(P; > Pg,,) = «.

We want ¢ to be small, e.g., € =1% for 99% confidence.

If P; > P,,, then with 99% contidence there is something else than just
noise, a source signal.
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To determine P,,,, we need to know the noise power distribution.

Warning: Because in High-Energy Astrophysics we are counting
individual photons, the relevant statistics are Poisson, not Gaussian.

The Leahy normalization is chosen such that if the x; are Poisson
distributed, then the P; exactly follow the chi-squared distribution with
2 degrees of freedom, y2. This is actually an exponential distribution:

€ = Probsingie(P; > Pget) = e Paer/2 ———Py, = —2Ine

Properties of this distribution: <P ;..>=2; Var (P,;..)=4



Statistics of Power Spectra

» Examples:
O &=1% corresponds to P;,,=9.2;

o a power of 40 has a probability
of e49/2=2x10"9 of being noise.

» Since a large number of
independent frequencies N,..;
are examined, the detection
threshold has to be defined as
that power that has an € (small)
probability to be exceeded in
one frequency bin out of the
N,,;,; €xamined.

o One should divide ¢ by the
number of trials.

Prob (P>P,)

€ = Neriar e_Pdet/Z




Statistics of Power Spectra




Rebinning and Averaging

The power spectrum is very noisy. Smoothing methods:

Average several power spectra of subsegments of the time series;

Average adjacent bins in a power spectrum: rebinning;

Windowing is also possible.
Averaged power distribution:

Individual P; follow the chi-squared distribution with 2 dof.

Additive property of y? distribution: sum of M powers is distributed as y2,,,
M — the number of the time series, W — Frequency rebinning factor:

<P_. .>=2;Var (P, ..)=4/MW (the number of trials decreases)

Central limit theorem:
for large MW the distribution of Py, tends to normal

(Gaussian), with mean 2 and standard deviation 2/VMW

noise noise




Signal Detection
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» Coherent peak: narrow power distribution — the
longer the observation span, the better. The signal
power to decrease by 1/MW.

Is it worth to average or rebin? No.

The signal power decreases faster than the threshold power
when averaging/rebinning;

If the frequency varies (orbital motion) is even worse as you
average signal with noise.

» Broad peak: broad power distribution - length of
observation not crucial - rebinning helps.



The power spectrum of a
sinusoidal signal
x;.=A cos (2rnvg L+ Q):

: 2
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mwax

where x=(v.¢ w)T

The highest power in the signal
power spectrum will be
obtained at the Fourier
frequency v; closest to vy,
Normalized to a power of 1 for
Veine= ¥ (X = 0), this power
varies between 0.405 and 1,
with an average value of 0.773
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Signal detection optimization
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Similar reasoning shows that the
signal power for a feature with
finite width Av drops
proportionally to 1/MW when
degrading the Fourier resolution.
However, as long as feature width
exceeds the frequency resolution,
Av > MW/T , the signal power in
each Fourier frequency within the
feature remains approx. constant.
When Av < MW/T the signal
power begins to drop.
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Implications: The search for
QPOs is a three step interactive
process.

Firstly, estimate (roughly) the
feature width.

Secondly, run again a PSD by
setting the optimal value of
MW equal to ~Av T. Two or
three iterations are likely
needed.

Finally, use 2 hypothesis
testing to derive significance of
the feature, its centroid and
I.m.s.
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* The QPO frequency varies with
time (on short timescales).
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» To minimize the pollution of the s
frequency drift to the measured QPO
parameters, PDS must be integrated 900
on the shortest possible timescales
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» Useful tip: Produce a dynamical
PSD
Smooth it in time and frequency s

Restrict the frequency range to
where you see the QPO 700 ‘
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Power spectrum plots
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Periodic Non-sinusoidal Signals
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The process of detecting something in a power spectrum
against the background of noise has several steps:

knowledge of the probability distribution of the noise powers;

knowledge of the interaction between the noise and the signal
powers (determination of the signal upper limit);

The detection level: Number of trials (frequencies and/or
sample);

Specific issues related to the intrinsic source variability (non
Poissonian noise);

Specific issues related to a given instrument/satellite (spurious
signals — spacecraft orbit, wobble motion, large data gaps, etc.).



