
Periodogram & Power Spectrum 

 The periodogram is an estimate of the spectral 
density of a signal. The term was coined by Arthur 
Schuster in 1898 (the Schuster Periodogram). 

 A Power Density Spectrum is computed as the 
squared Fourier amplitudes with some 
normalization: 
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Power Spectrum – Leahy Normalization 

 We will adopt the Leahy et al. (1983) normalization: 
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Ntot – dispersion of the total number of counts in the 
time series. For the Poisson process, the variance 
(square of the standard deviation) is equal to the total 
number of counts. 
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Properties of Leahy normalized PDS 

 Variance in the real time series xk: 
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Parseval’s theorem 
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variance is sum of powers! 
The dimension of Pj is the same as xk and aj: 𝑃𝑗 = 𝑎𝑗 = 𝑥𝑘  
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Properties of Leahy normalized PDS 

 The Leahy normalization is chosen such that if the xk are Poisson 
distributed, then the Pj exactly follow the chi-squared distribution with 
2 dof, χ2. 

 Properties of this distribution: 

 The mean power is 2;  

 the standard deviation is 2! 

 So, the power spectrum is very noisy. This does not improve with: 

 longer observation — you just get more powers 

 broader time bins — you just get a lower νNy 
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Statistics of Power Spectra 

 Flux measurements are always accompanied by noise.  

 The light curve can be divided into its independent components: 
the deterministic signal S and the noise N. For an individual time 
bin, the total number of counts is composed of the sum of the 
signal and the noise, i.e., xk = sk + nk. 

 Examples of deterministic signals: 

 a non-periodic deterministic variation, such as a nova light curve; 

 A periodic variation, such as an eclipsing binary or a RR Lyr light curve; 

 a multiply periodic variation, such as a spectroscopic triple system;  

 a modulated periodic variation where either the amplitude, frequency, or 
phase may vary with time - for example a pulsating system in a binary 
orbit. 

 

83 



Statistics of Power Spectra 

 'Noise' (= random aka stochastic processes) in the light curve 
produces peaks and broad components in the power spectrum. 

 Examples of noise: 

 Counting statistics noise (Poisson noise) -> white noise; 

 Poisson noise modified by instrumental effects (e.g. dead-time) and 
other instrumental noise; 

 Noise that is (stochastic) intrinsic source variability: QPO, band limited 
noise, red noise, etc. 

 All these can occur at the same time, possibly together with 
deterministic signals. 

 They can be the background against which you are trying to 
detect something else 

 Or they can be the signal you are trying to detect. 
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Statistics of Power Spectra 
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Main types of signals 

 Coherent pulsation 

 Broad-band noise 

 Broad peak (QPO) 

 Peaked-noise 
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Properties of Leahy normalized PDS 

 Fractional rms (root-mean-square) amplitude of a signal in a 
time series xk: 
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r is dimensionless and often expressed in %  

(percentage rms variation). 
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Properties of Leahy normalized PDS 

 ”rms normalized” power density: q(νj)  TPj/Nph 

physical unit of q(νj) is (rms/mean)2/Hz 

 

 ”Source” fractional rms amplitude: If the xk are the sum of source and 
background: xk = bk + sk, then the rms amplitude as a fraction of just the sk: 

𝑟𝑠 = 𝑟
𝐵+𝑆

𝑆
,  

where B and S are sums of the bk and sk, so B+S = 𝑥𝑘𝑘 = Nph 

 

 ”Source rms normalized” power density (“Miyamoto” normalization):  

qS  𝑞
𝐵+𝑆

𝑆

2
= 𝑇𝑃𝑗

𝐵+𝑆

𝑆2  

the same unit as q: (rms/mean)2/Hz 
 
Requires a model or a measurement of the background count rate. 
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Coherent Signals 

 Much analysis involves “coherent” signals, i.e. 
periodic signals whose phase is constant over the 
relevant duration 

 Q = ν/Δν >> 1000 

 Examples: 
 Pulses from rotating pulsars; 

 Orbital modulation or eclipses; 

 Precession periods. 
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Statistics of Power Spectra 

 How to determine the significance of peaks found in power spectra? 
How big must a power be to constitute a significant excess over the 
noise? 

 Let’s define ε as the probability that a noise fluctuation exceeds Pdet.  
The (1- ε) confidence detection level Pdet is a level that has a false alarm 
probability of ε.  If there is just noise, Prob(Pj > Pdet) = ε. 
We want ε to be small, e.g., ε =1% for 99% confidence. 

 If Pj > Pdet then with 99% confidence there is something else than just 
noise, a source signal. 
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Statistics of Power Spectra 

 To determine Pdet, we need to know the  noise power distribution. 

 

 Warning: Because in High-Energy Astrophysics we are counting 
individual photons, the relevant statistics are Poisson, not Gaussian. 

 The Leahy normalization is chosen such that if the xk are Poisson 
distributed, then the Pj exactly follow the chi-squared distribution with 
2 degrees of freedom, χ2. This is actually an exponential distribution: 
 

𝜀 = 𝑃𝑟𝑜𝑏𝑠𝑖𝑛𝑔𝑙𝑒(𝑃𝑗 > 𝑃𝑑𝑒𝑡) = 𝑒
−𝑃
𝑑𝑒𝑡
2     
                   

𝑃𝑑𝑒𝑡 = −2 ln 𝜀 

 

 Properties of this distribution: <Pnoise>= 2;  Var (Pnoise)=4 
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Statistics of Power Spectra 

 Examples:  

 ε=1% corresponds to Pdet=9.2; 

 a power of 40 has a probability 
of e-40/2=210-9 of being noise. 

 Since a large number of 
independent frequencies Ntrial 
are examined, the detection 
threshold has to be defined as 
that power that has an ε (small) 
probability to be exceeded in 
one frequency bin out of the 
Ntrial examined. 

 One should divide ε by the 
number of trials. 
 

𝜀 = 𝑁𝑡𝑟𝑖𝑎𝑙  𝑒
−𝑃
𝑑𝑒𝑡
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Statistics of Power Spectra 

Important! The number of trial 
powers Ntrial over which the 
search has been carried out: 

Ntrial = to the powers in the PSD if  
all the Fourier frequencies are 
considered; 

Ntrial < than the powers in the PSD if 
a smaller range of frequencies  has 
been considered. 

 Examples (cont.): Ntrial=10 000 

 ε=1% corresponds to Pdet=27.6; 

 a power of 40 has a probability 
of e-40/2=210-5 of being noise. 
 
Still significant!! 
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Rebinning and Averaging 

 The power spectrum is very noisy. Smoothing methods: 

 Average several power spectra of subsegments of the time series; 

 Average adjacent bins in a power spectrum: rebinning; 

 Windowing is also possible. 

 Averaged power distribution: 

 Individual Pj follow the chi-squared distribution with 2 dof. 

 Additive property of χ2 distribution: sum of M powers is distributed as χ2
2M 

 M – the number of the time series, W – Frequency rebinning factor: 

<Pnoise>= 2; Var (Pnoise)=4/MW    (the number of trials decreases) 

 Central limit theorem:  
for large MW the distribution of 𝑷𝑾𝑴 tends to normal 

(Gaussian), with mean 2 and standard deviation 𝟐 𝑴𝑾  
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M=1, 

Noisy PDS 

M=10,  
A signal is clearly detected 

Signal Detection 
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A note about rebinning 

 Coherent peak: narrow power distribution – the 
longer the observation span, the better. The signal 
power to decrease by 1/MW. 
Is it worth to average or rebin? No. 

 The signal power decreases faster than the threshold power 
when averaging/rebinning; 

 If the frequency varies (orbital motion) is even worse as you 
average signal with noise. 

 

 Broad peak: broad power distribution - length of 
observation not crucial - rebinning helps.  
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Signal detection optimization 

 The power spectrum of a 
sinusoidal signal  
xk=A cos (2sinetk+φ): 
 
 
 
where x=(sine-j)T 

 The highest power in the signal 
power spectrum will be 
obtained at the Fourier 
frequencyj closest to sine. 
Normalized to a power of 1 for 
sine = j (x = 0), this power 
varies between 0.405 and 1, 
with an average value of 0.773 
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Signal detection optimization 

 Implications: When 
searching for strictly coherent 
signals it is important to rely 
upon the original/maximum 
Fourier resolution (1/T). 
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Signal detection optimization 

 Similar reasoning shows that the 

signal power for a feature with 

finite width  drops 

proportionally to 1/MW when 

degrading the Fourier resolution. 

However, as long as feature width 

exceeds the frequency resolution, 

 > MW/T , the signal power in 

each Fourier frequency within the 

feature remains approx. constant.  

When  < MW/T  the signal 

power begins to drop. 
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Signal detection optimization 

 Implications: The search for 

QPOs is a three step interactive 

process.  

 Firstly, estimate (roughly) the 

feature width.  

 Secondly, run again a PSD by 

setting  the optimal value of 

MW equal to ~ T. Two or 

three iterations are likely 

needed.  

 Finally, use χ2 hypothesis 

testing to derive significance of 

the feature, its centroid and 

r.m.s. 
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Measuring narrow features in PSD 

 The QPO frequency varies with 

time (on short timescales). 

 

 To minimize the pollution of the 
frequency drift to the measured QPO 
parameters, PDS must be integrated 
on the shortest possible timescales 

 

 Useful tip: Produce a dynamical 
PSD 

 Smooth it in time and frequency 

 Restrict the frequency range to 
where you see the QPO 

105 



Power spectrum plots 

 Multiply the power spectrum by the 

frequency 

 

 Obtain a νPν representation 

 

 Useful to see where the power per 

decade peaks 

 

 Characteristic frequencies are peaks 
in νPν 
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Periodic Non-sinusoidal Signals 

 Power for Periodic 
Nonsinusoidal Signals is 
spread over harmonics of 
the modulation 
frequency: 
Confidence lower. 
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Summary: Detecting something in a power spectrum 

The process of detecting something in a power spectrum 
against the background of noise has several steps: 

 

 knowledge of the probability distribution of the noise powers; 

 knowledge of the interaction between the noise and the signal 
powers (determination of the signal upper limit); 

 The detection level: Number of trials (frequencies and/or 
sample); 

 Specific issues related to the intrinsic source variability (non 
Poissonian noise); 

 Specific issues related to a given instrument/satellite (spurious 
signals – spacecraft orbit, wobble motion, large data gaps, etc.). 
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