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Simplest methods of Time 
Series Analysis 



Simplest methods of Time Series Analysis 
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Short-term periodic events (eclipses) 
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Short-term periodic events (eclipses) 
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Short-term periodic events (eclipses) 
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Period-folded light curve (phase diagram) 
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Gapped light curve 
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What is the period? 
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Method of least-squares 

 One of the most common tasks in observational astronomy is to derive 
the "best" numerical relationship between observable quantities, where 
some or all of the data that you are analyzing contain measuring errors. 

 The most widely used and best understood tool is the "method of least-
squares.“ 

 • We want to find the straight line of the 
form y = mx + b that "best" describes our 
data set, which consists of the N observed 
data points (x1, y1), ..., (xN, yN). Data points 
contain errors: Ůi=  mx i + b – y i  

• The principle of least squares leads to the 
minimization of  

… ‐ς 
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Short-term periodic events (eclipses) 
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Period-folded light curve (phase diagram) 
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Short-term periodic events (eclipses) 
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Short-term periodic events (eclipses) 
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Curve-Fitting Approach 

 The simplest periodic data are those consisting of a 
single cosine (sine) wave: 

x(t) = a cos (ɤt − ű) = A cos ɤt + B sin ɤt 
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Frequency 

 The basic relation: 

ὊὶὩήόὩὲὧώ      or     ’  

 

 If the Period is in seconds, then Frequency will be in 
Herz [Hz] 

 If the Period is in days, then Frequency will be in 
1/day [Cycles per day] 

 

 Angular frequency ɤ = 2p ɜ [radiands per second] 
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Curve-Fitting Approach 

 

 

 

 

 

 

 
 

Monthly average total ozone levels, 65Á S to 65Á N 
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Curve-Fitting Approach 

Fitting one (left) and two (right) sinusoids with known periods. 
If the period is unknown then the fitting is not simple. 
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C O N T I N U O U S   A N D  D I S C R E T E  F O U R I E R  
T R A N S F O R M   

P O W E R  S P E C T R U M  

Harmonic Analysis 
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Time and Frequency domains 

 A physical process can be described either in the time 
domain, by the values of some quantity x as a function of 
time t, e.g., x(t), or else in the frequency domain, where 
the process is specified by giving its amplitude X 
(generally a complex number indicating phase also) as a 
function of frequency ɜ, that is X(ɜ), with —¤ < ɜ < + ¤. 
For many purposes it is useful to think of x(t) and X(ɜ) as 
being two different representations of the same function.  

 One goes back and forth between these two 
representations by means of the Fourier transform 
equations. 
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FOURIER TRANSFORM 

 A Workhorse of the 
Timing World (or a part 
of this). 

 The Additive Model for a 
Time Series: 
data are realizations of 
random variables Yt that 
are themselves sums of 
different components 
(for example, signal and 
noise). 
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FOURIER TRANSFORM 

 A Fourier transform is a decomposition of the signal 
into sine waves 

 

 

 

 At ɤ, best-fit sinusoid is: 

x(t ) = a cos (ɤt − ű) = A cos ɤt + B sin ɤt 

ὥ ὃ ὄ  ÁÎÄ ÔÁÎű = ὄȾὃ 
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FOURIER TRANSFORM 

 Do this at many frequencies ɤj, then 

ὼὸ
ρ

ὔ
aj cos (ɤjt − űj)

ρ

ὔ
(Aj cos ɤjt + Bj sin ɤjt) 

 The Fourier coefficients Aj and Bj can be straightforwardly 
computed as: 

ὃὮ xk cos ɤjtὯ 

ὄὮ xk sin ɤjtk 

where xk=x(t k) 
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FOURIER TRANSFORM 

 Aj and Bj are simply the correlation of the signal xk 

with a sine or cosine wave of frequency ɤj;  

 If there is a good correlation then the corresponding 
Fourier coefficient is large and gives a large 
contribution to the sum; 

 So, good correlation:  
large A, B — bad correlation: small A, B. 
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Complex representation 

 At each ɤ we get two numbers: (A, B) or (a, ű). For 
easier handling, it is possible to represent the 
Fourier transform in terms of complex numbers: 

ὥὮ xk Ὡ  

ὼὯ aj Ὡ  

The complex numbers aj – complex Fourier amplitudes: 

aj=ὥὮ Ὡ
ű ὥὮ ÃÏÓűj ὭÓÉÎűj) 

i2=-1 
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Complex representation 

The Euler relation: 

Ὡ ÃÏÓὼ ὭÓÉÎὼ 
and its inverse: 

ÃÏÓὼ
ρ

ς
Ὡ Ὡ  

ÓÉÎὼ
ρ

ςὭ
Ὡ Ὡ  

 
Do not worry! Observed data are strictly real-valued. 
We consider both positive and negative frequencies, ɤ-j =-ɤj 
Imaginary terms at +j and −j cancel out in Sj to produce 
strictly real terms ςὥὮÃÏÓjtkī•Ὦ 
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Complex representation 

 

Good explanation: 

 

http://betterexplained.com/articles/an-interactive-guide-to-
the-fourier-transform/ 
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Continuous Fourier transform 

 Decomposes a function into an infinite number of 
sinusoidal waves. 

 Signal x(t):             —¤ < t < + ¤ 

 Transform a(ɜ):    —¤ < ɜ < + ¤ 
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Basic properties of Fourier transform 

Let’s consider transform pairs: x(t) Ú a(ɜ) 

 

 Linearity: The transform of the sum of two 
functions is equal to the sum of the transforms: 
                         x(t)+  y(t ) Ú a(ɜ)+ b(ɜ)  
We can analyse complex optical systems by looking 
at different frequencies separately. 

 Time scaling: The transform of a constant times a 
function is that same constant times the transform of 

the function:        x(ct) Ú ὥ  
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Basic properties of Fourier transform 

 Convolution: 
The convolution of the two functions x(t)  and y(t)  is 

ὼὸ ώzὸḰ ὼ†ώὸ †Ὠ† 

Basic properties are  
commutativity:  x * y = y * x 
distributivity over addition:  x * (y+z) = x * y + x* z 

 Convolution theorem: The Fourier transform of 
the convolution is the product of the individual 
Fourier transforms:                 x(t )* y(t) Ú a(ɜ) b(ɜ)  
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Power spectrum 

 Parseval’s theorem: 
The total power in a signal is the same in the time 
domain and in the frequency domain: 

Ὕέὸὥὰ ὖέύὩὶḳ ὼὸ Ὠὸ ὥ’ Ὠ’ 

 For a given signal, the power spectrum gives a 
plot of the portion of a signal's power (energy per 
unit time) falling within given frequency bins. 
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Power Spectral Density (PSD) 

 How much power  is contained in the frequency 
interval bentween ν and ν+dν ? 

Power spectral density (PSD):   
           ὖνḳ ὥ’ ȟ Њ ν Њ 

One-sided PSD:   
           ὖνḳ ὥ’ ὥ ’ ȟ π ν Њ 

We have real x(t) , then:   
          ὖνḳςὥ’  
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Basic properties of Fourier transform 

 Dirac delta function (d-function): 

δ(x) = 0,     x  ̧0 

δ(x) = ∞,     x = 0 

 

ὼὨὼ ρ 
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Continuous Fourier transform 

 The continuous Fourier transform of an infinitely 
extended sine (or cosine) wave is a delta function 
(this is not in general true for the discrete Fourier 
transform). 
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Continuous Fourier transform 

 The continuous Fourier transform has a number of 
pleasing properties.  

 Therefore, theoretical predictions of the shape of the 
Fourier transform of a signal are usually in terms of 
the continuous Fourier transform. 

 … but we don’t have either continuous or infinite 
signals. 

 

 Fourier theorem: the discrete Fourier transform 
gives a complete description of the discrete signal.  
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Discrete Fourier transform of real time series 

 Time series, xk,  k=0 , ... , N-1 

 The discrete Fourier transform decomposes this 
signal into N sine waves, aj,  j= -N/2+1 , ... , N/2  

ὥὮ xk Ὡ
Ⱦ      Ὦ

ὔ

ς
ρȟȣȟ

ὔ

ς
 

 

ὼὯ
ρ

ὔ
aj Ὡ

Ⱦ

Ⱦ

     Ὧ πȟȣȟὔ ρ 
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Discrete Fourier transform of real time series 

 Time step, dt=T/N 

 Frequency step, dɜ=1/T 

 xk refers to time tk = kT/N  

 aj refers to frequency ɤj  = 2pɜj = 2pj/T  

 So, for Ὡ  we have Ὡp Ⱦ
 

 

 Note that the number (N) of input values xk  
equals the number of output values a j.  

 If xk  are uncorrected, then a j  are 
uncorrected as well. 
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Discrete Fourier transform of real time series 

 The highest frequency you need for a complete 
description of the discrete signal is the Nyquist 
frequency 

ɜNy=ɜN/2 =    half the "sampling“ frequency 

 Lowest frequency (>0) = frequency of the first 
frequency step = 1/T = frequency of sinusoid that fits 
exactly once on T 

 At zero frequency you get ὥπ В ὼὯ ὔὴὬ  the 
total number of photons detected, always real for 
real xk 
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