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Short-term periodic events (eclipses)
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Short-term periodic events (eclipses)
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Short-term periodic events (eclipses)
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Short-term periodic events (eclipses)
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Period-folded light curve (phase diagram)
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Gapped light curve
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One of the most common tasks in observational astronomy is to derive
the "best" numerical relationship between observable quantities, where
some or all of the data that you are analyzing contain measuring errors.

The most widely used and best understood tool is the "method of least-
squares.“
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« We want to find the straight line of the
form y = mx + b that "best" describes our 2l ]

data set, which consists of the N observed o] M __
data points (x,, v,), ..., (Xy, Yn)- Data points L % N
contain errors: L): mx; + b -y, I H/‘ﬁ/‘/ 1

« The principle of least squares leads to the
minimization of
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Short-term periodic events (eclipses)
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Period-folded light curve (phase diagram)
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Short-term periodic events (eclipses)
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Short-term periodic events (eclipses)
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Curve-Fitting Approach




The basic relation:

"Oi Q0 Q&wew or = -

If the Period is in seconds, then Frequency will be in
Herz [HZ]

If the Period is in days, then Frequency will be in
1/day [Cycles per day]

Angular frequency ¥ = 2p 3 [radiands per second]



Curve-Fitting Approach
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Curve-Fitting Approach

AN, S P

1978 1980 1982 1984 1986 1988 1990 1992 1994 1978 1980 1982 1984 1986 1988 1990 1992 1994

Dobson units

280 285 290 295 300 305
Dobson units

280 285 290 295 300 305

o | e

2 o 4 f PR [

S E

§ © 5 °

w Wi
g v g "

e e

i g

1978 1980 1982 1984 1986 1988 1990 1992 1994 1978 1980 1982 1984 1986 1988 1990 1992 1994

Fitting one (left) and two (right) sinusoids with known periods.
If the period is unknown then the fitting is not simple.




Harmonic Analysis

CONTINUOUS AND DISCRETE FOURIER
TRANSFORM

POWER SPECTRUM




A physical process can be described either in the time
domain, by the values of some quantity x as a function of
time t, e.g., X(t), or else in the frequency domain, where
the process is specified by giving its amplitude X
(generally a complex number indicating phase also) as a
function of frequency 3, that is X(3), with —o <3< + @,
For many purposes it is useful to think of x(t) and X(3) as
being two different representations of the same function.

One goes back and forth between these two
representations by means of the Fourier transform
equations.



FOURIER TRANSFORM

Joseph Fourier (1768-1830) » A Workhorse of the
- Timing World (or a part
of this).

» The Additive Model for a
Time Series:
data are realizations of
random variables Y, that
are themselves sums of
different components
(for example, signal and
noise).
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A Fourier transform is a decomposition of the signal
Into sme waves

X

o/\/\/\/\/

time

At ¥, best-fit smusmd 1S:
X(t) =acos(¥t—0)=Acos ¥t +Bsin ¥t
& V6 6 Al BAR= 676




Do this at many frequencies ¥;, then

w0) UB a; cos (¥t — 0;) UE (A cos ¥t + B sin ¥;t)

The Fourier coefficients A; and B; can be straightforwardly
computed as:

O X €OS ¥t

67Q Xk Sin thk

where x,=x(t,)



A, and B, are simply the correlation of the signal x,
with a sine or cosine wave of frequency ¥;;

If there is a good correlation then the corresponding
Fourier coefficient is large and gives a large
contribution to the sum;

So, good correlation:
large A, B — bad correlation: small A, B.



At each ¥ we gettwo numbers: (A, B) or (a, (). For
easier handling, it is possible to represent the
Fourier transform in terms of complex numbers:

Im
Wq X, Q
12=-1

W a; Q

Re

The complex numbers a, — complex Fourier amplitudes:
a=|@p QY & AT "® Hij)




The Euler relation:

and its inverse:

ATc® g(n Q )
O kd gQ Q )

Do not worry! Observed data are strictly real-valued.
We consider both positive and negative frequenmes ¥ ==,

Imaginary terms at +j and — jcancel out in S; to produce
strictly real terms ¢|} A | TQtT * 4



Complex representation
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Continuous Fourier transform

t) 2wt dt

—2ﬂ'uit dlﬁ'




Let’s consider transform pairs: x(t) U a(3)

Linearity: The transform of the sum of two

functions is equal to the sum of the transforms:
x(t)+ y(t) U a(3)+ b(s)

We can analyse complex optical systems by looking

at different frequencies separately.

Time scaling: The transform of a constant times a
function is that same constant times the transform of

the function:  x(ct) U m oo(—)



Convolution:
The convolution of the two functions x(t) and y(t) is

W0)Zwo K WHwo T Qf

Basic properties are
commutativity: X *y =y *X
distributivity over addition: X *(y+z) =X *y + Xx*z

Convolution theorem: The Fourier transform of
the convolution is the product of the individual
Fourier transforms: X(t) *y(t) U a(3) b(3)



Parseval’s theorem:
The total power in a signal is the same in the time
domain and in the frequency domain:

Y¢ 0L R |(9)] D ()| Q

For a given signal, the power spectrum gives a
plot of the portion of a signal's power (energy per
unit time) falling within given frequency bins.



How much power is contained in the frequency
interval bentween v and v+dv ?

Power spectral density (PSD):

OV k|&() A b v Hb
One-sided PSD: :

Lv k&) [aC ) AT v b

We have real x(t),, then:
0 v k ¢laC )]



Basic properties of Fourier transform




Continuous Fourier transform

» The continuous Fourier transform of an infinitely
extended sine (or cosine) wave is a delta function
(this is not in general true for the discrete Fourier

transform).

at

Inters Seer |
1




The continuous Fourier transform has a number of
pleasing properties.

Therefore, theoretical predictions of the shape of the
Fourier transform of a signal are usually in terms of
the continuous Fourier transform.

... but we don’t have either continuous or infinite
signals.

Fourier theorem: the discrete Fourier transform
gives a complete description of the discrete signal.



Time series, X,, k=0, ..., N-1
The discrete Fourier transform decomposes this

signal into N sine waves, a;, j=-N/2+1, ..., N/2
« , ;s 0 D
Wq X, Q Q c phB hE

a0 7 Q mBR p

C:|©



» Time step, dt=T/N I

- Frequency step, da=1/T ||||||||||||||||||Hw
* X, refers to time t, = KT/N

* g, refers to frequency ¥; = 2p3; = 2pj/T

» So, for Q we have QP 7

* Note that the number (N) of input values x,
equals the number of output values a;.

» If X, are uncorrected, then a, are
uncorrected as well.



The highest frequency you need for a complete
description of the discrete signal is the Nyquist
frequency

3ny=3n/2 = —  half the "sampling” frequency

Lowest frequency (>0) = frequency of the first
frequency step = 1/T = frequency of sinusoid that fits
exactlyonceon T

At zero frequency youget w, B @, U 1 Q the
total number of photons detected, always real for
real X,



